core/
cell.rs

1/! Shareable mutable containers.
2/!
3/! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4/! have one of the following:
5/!
6/! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7/! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8/!
9/! This is enforced by the Rust compiler. However, there are situations where this rule is not
10/! flexible enough. Sometimes it is required to have multiple references to an object and yet
11/! mutate it.
12/!
13/! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14/! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15/! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16/! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17/! types are the correct data structures to do so).
18/!
19/! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20/! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21/! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22/! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23/! (mutable only via `&mut T`).
24/!
25/! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26/! Each provides a different way of providing safe interior mutability.
27/!
28/! ## `Cell<T>`
29/!
30/! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31/! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32/! obtained without replacing it with something else. Both of these rules ensure that there is
33/! never more than one reference pointing to the inner value. This type provides the following
34/! methods:
35/!
36/!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37/!    interior value by duplicating it.
38/!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39/!    interior value with [`Default::default()`] and returns the replaced value.
40/!  - All types have:
41/!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42/!      value.
43/!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44/!      interior value.
45/!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46/!
47/! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48/! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49/! possible. For larger and non-copy types, `RefCell` provides some advantages.
50/!
51/! ## `RefCell<T>`
52/!
53/! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54/! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55/! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56/! statically, at compile time.
57/!
58/! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59/! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60/! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61/! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62/! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63/! these rules, the thread will panic.
64/!
65/! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66/!
67/! ## `OnceCell<T>`
68/!
69/! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70/! typically only need to be set once. This means that a reference `&T` can be obtained without
71/! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72/! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73/! reference to the `OnceCell`.
74/!
75/! `OnceCell` provides the following methods:
76/!
77/! - [`get`](OnceCell::get): obtain a reference to the inner value
78/! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79/! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80/! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81/!   if you have a mutable reference to the cell itself.
82/!
83/! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84/!
85/! ## `LazyCell<T, F>`
86/!
87/! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88/! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89/! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90/! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91/! so its use is much more transparent with a place which has been initialized by a constant.
92/!
93/! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94/!
95/! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96/! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97/!
98/! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99/!
100/! # When to choose interior mutability
101/!
102/! The more common inherited mutability, where one must have unique access to mutate a value, is
103/! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104/! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105/! interior mutability is something of a last resort. Since cell types enable mutation where it
106/! would otherwise be disallowed though, there are occasions when interior mutability might be
107/! appropriate, or even *must* be used, e.g.
108/!
109/! * Introducing mutability 'inside' of something immutable
110/! * Implementation details of logically-immutable methods.
111/! * Mutating implementations of [`Clone`].
112/!
113/! ## Introducing mutability 'inside' of something immutable
114/!
115/! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116/! be cloned and shared between multiple parties. Because the contained values may be
117/! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118/! impossible to mutate data inside of these smart pointers at all.
119/!
120/! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121/! mutability:
122/!
123/! ```
124/! use std::cell::{RefCell, RefMut};
125/! use std::collections::HashMap;
126/! use std::rc::Rc;
127/!
128/! fn main() {
129/!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130/!     / Create a new block to limit the scope of the dynamic borrow
131/!     {
132/!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133/!         map.insert("africa", 92388);
134/!         map.insert("kyoto", 11837);
135/!         map.insert("piccadilly", 11826);
136/!         map.insert("marbles", 38);
137/!     }
138/!
139/!     / Note that if we had not let the previous borrow of the cache fall out
140/!     / of scope then the subsequent borrow would cause a dynamic thread panic.
141/!     / This is the major hazard of using `RefCell`.
142/!     let total: i32 = shared_map.borrow().values().sum();
143/!     println!("{total}");
144/! }
145/! ```
146/!
147/! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148/! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149/! multi-threaded situation.
150/!
151/! ## Implementation details of logically-immutable methods
152/!
153/! Occasionally it may be desirable not to expose in an API that there is mutation happening
154/! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155/! forces the implementation to perform mutation; or because you must employ mutation to implement
156/! a trait method that was originally defined to take `&self`.
157/!
158/! ```
159/! # #![allow(dead_code)]
160/! use std::cell::OnceCell;
161/!
162/! struct Graph {
163/!     edges: Vec<(i32, i32)>,
164/!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165/! }
166/!
167/! impl Graph {
168/!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169/!         self.span_tree_cache
170/!             .get_or_init(|| self.calc_span_tree())
171/!             .clone()
172/!     }
173/!
174/!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175/!         / Expensive computation goes here
176/!         vec![]
177/!     }
178/! }
179/! ```
180/!
181/! ## Mutating implementations of `Clone`
182/!
183/! This is simply a special - but common - case of the previous: hiding mutability for operations
184/! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185/! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186/! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187/! reference counts within a `Cell<T>`.
188/!
189/! ```
190/! use std::cell::Cell;
191/! use std::ptr::NonNull;
192/! use std::process::abort;
193/! use std::marker::PhantomData;
194/!
195/! struct Rc<T: ?Sized> {
196/!     ptr: NonNull<RcInner<T>>,
197/!     phantom: PhantomData<RcInner<T>>,
198/! }
199/!
200/! struct RcInner<T: ?Sized> {
201/!     strong: Cell<usize>,
202/!     refcount: Cell<usize>,
203/!     value: T,
204/! }
205/!
206/! impl<T: ?Sized> Clone for Rc<T> {
207/!     fn clone(&self) -> Rc<T> {
208/!         self.inc_strong();
209/!         Rc {
210/!             ptr: self.ptr,
211/!             phantom: PhantomData,
212/!         }
213/!     }
214/! }
215/!
216/! trait RcInnerPtr<T: ?Sized> {
217/!
218/!     fn inner(&self) -> &RcInner<T>;
219/!
220/!     fn strong(&self) -> usize {
221/!         self.inner().strong.get()
222/!     }
223/!
224/!     fn inc_strong(&self) {
225/!         self.inner()
226/!             .strong
227/!             .set(self.strong()
228/!                      .checked_add(1)
229/!                      .unwrap_or_else(|| abort() ));
230/!     }
231/! }
232/!
233/! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234/!    fn inner(&self) -> &RcInner<T> {
235/!        unsafe {
236/!            self.ptr.as_ref()
237/!        }
238/!    }
239/! }
240/! ```
241/!
242/! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243/! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244/! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245/! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246/! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247/! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248/! [`Sync`]: ../../std/marker/trait.Sync.html
249/! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{Destruct, PhantomData, Unsize};
256use crate::mem::{self, ManuallyDrop};
257use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::panic::const_panic;
259use crate::pin::PinCoerceUnsized;
260use crate::ptr::{self, NonNull};
261use crate::range;
262
263mod lazy;
264mod once;
265
266#[stable(feature = "lazy_cell", since = "1.80.0")]
267pub use lazy::LazyCell;
268#[stable(feature = "once_cell", since = "1.70.0")]
269pub use once::OnceCell;
270
271/ A mutable memory location.
272/
273/ # Memory layout
274/
275/ `Cell<T>` has the same [memory layout and caveats as
276/ `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
277/ `Cell<T>` has the same in-memory representation as its inner type `T`.
278/
279/ # Examples
280/
281/ In this example, you can see that `Cell<T>` enables mutation inside an
282/ immutable struct. In other words, it enables "interior mutability".
283/
284/ ```
285/ use std::cell::Cell;
286/
287/ struct SomeStruct {
288/     regular_field: u8,
289/     special_field: Cell<u8>,
290/ }
291/
292/ let my_struct = SomeStruct {
293/     regular_field: 0,
294/     special_field: Cell::new(1),
295/ };
296/
297/ let new_value = 100;
298/
299/ / ERROR: `my_struct` is immutable
300/ / my_struct.regular_field = new_value;
301/
302/ / WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
303/ / which can always be mutated
304/ my_struct.special_field.set(new_value);
305/ assert_eq!(my_struct.special_field.get(), new_value);
306/ ```
307/
308/ See the [module-level documentation](self) for more.
309#[rustc_diagnostic_item = "Cell"]
310#[stable(feature = "rust1", since = "1.0.0")]
311#[repr(transparent)]
312#[rustc_pub_transparent]
313pub struct Cell<T: ?Sized> {
314    value: UnsafeCell<T>,
315}
316
317#[stable(feature = "rust1", since = "1.0.0")]
318unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
319
320/ Note that this negative impl isn't strictly necessary for correctness,
321/ as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
322/ However, given how important `Cell`'s `!Sync`-ness is,
323/ having an explicit negative impl is nice for documentation purposes
324/ and results in nicer error messages.
325#[stable(feature = "rust1", since = "1.0.0")]
326impl<T: ?Sized> !Sync for Cell<T> {}
327
328#[stable(feature = "rust1", since = "1.0.0")]
329impl<T: Copy> Clone for Cell<T> {
330    #[inline]
331    fn clone(&self) -> Cell<T> {
332        Cell::new(self.get())
333    }
334}
335
336#[stable(feature = "rust1", since = "1.0.0")]
337#[rustc_const_unstable(feature = "const_default", issue = "143894")]
338impl<T: [const] Default> const Default for Cell<T> {
339    / Creates a `Cell<T>`, with the `Default` value for T.
340    #[inline]
341    fn default() -> Cell<T> {
342        Cell::new(Default::default())
343    }
344}
345
346#[stable(feature = "rust1", since = "1.0.0")]
347impl<T: PartialEq + Copy> PartialEq for Cell<T> {
348    #[inline]
349    fn eq(&self, other: &Cell<T>) -> bool {
350        self.get() == other.get()
351    }
352}
353
354#[stable(feature = "cell_eq", since = "1.2.0")]
355impl<T: Eq + Copy> Eq for Cell<T> {}
356
357#[stable(feature = "cell_ord", since = "1.10.0")]
358impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
359    #[inline]
360    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
361        self.get().partial_cmp(&other.get())
362    }
363
364    #[inline]
365    fn lt(&self, other: &Cell<T>) -> bool {
366        self.get() < other.get()
367    }
368
369    #[inline]
370    fn le(&self, other: &Cell<T>) -> bool {
371        self.get() <= other.get()
372    }
373
374    #[inline]
375    fn gt(&self, other: &Cell<T>) -> bool {
376        self.get() > other.get()
377    }
378
379    #[inline]
380    fn ge(&self, other: &Cell<T>) -> bool {
381        self.get() >= other.get()
382    }
383}
384
385#[stable(feature = "cell_ord", since = "1.10.0")]
386impl<T: Ord + Copy> Ord for Cell<T> {
387    #[inline]
388    fn cmp(&self, other: &Cell<T>) -> Ordering {
389        self.get().cmp(&other.get())
390    }
391}
392
393#[stable(feature = "cell_from", since = "1.12.0")]
394#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
395impl<T> const From<T> for Cell<T> {
396    / Creates a new `Cell<T>` containing the given value.
397    fn from(t: T) -> Cell<T> {
398        Cell::new(t)
399    }
400}
401
402impl<T> Cell<T> {
403    / Creates a new `Cell` containing the given value.
404    /
405    / # Examples
406    /
407    / ```
408    / use std::cell::Cell;
409    /
410    / let c = Cell::new(5);
411    / ```
412    #[stable(feature = "rust1", since = "1.0.0")]
413    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
414    #[inline]
415    pub const fn new(value: T) -> Cell<T> {
416        Cell { value: UnsafeCell::new(value) }
417    }
418
419    / Sets the contained value.
420    /
421    / # Examples
422    /
423    / ```
424    / use std::cell::Cell;
425    /
426    / let c = Cell::new(5);
427    /
428    / c.set(10);
429    / ```
430    #[inline]
431    #[stable(feature = "rust1", since = "1.0.0")]
432    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
433    pub const fn set(&self, val: T)
434    where
435        T: [const] Destruct,
436    {
437        self.replace(val);
438    }
439
440    / Swaps the values of two `Cell`s.
441    /
442    / The difference with `std::mem::swap` is that this function doesn't
443    / require a `&mut` reference.
444    /
445    / # Panics
446    /
447    / This function will panic if `self` and `other` are different `Cell`s that partially overlap.
448    / (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
449    / However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
450    /
451    / # Examples
452    /
453    / ```
454    / use std::cell::Cell;
455    /
456    / let c1 = Cell::new(5i32);
457    / let c2 = Cell::new(10i32);
458    / c1.swap(&c2);
459    / assert_eq!(10, c1.get());
460    / assert_eq!(5, c2.get());
461    / ```
462    #[inline]
463    #[stable(feature = "move_cell", since = "1.17.0")]
464    pub fn swap(&self, other: &Self) {
465        / This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
466        / do the check in const, so trying to use it here would be inviting unnecessary fragility.
467        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
468            let src_usize = src.addr();
469            let dst_usize = dst.addr();
470            let diff = src_usize.abs_diff(dst_usize);
471            diff >= size_of::<T>()
472        }
473
474        if ptr::eq(self, other) {
475            / Swapping wouldn't change anything.
476            return;
477        }
478        if !is_nonoverlapping(self, other) {
479            / See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
480            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
481        }
482        / SAFETY: This can be risky if called from separate threads, but `Cell`
483        / is `!Sync` so this won't happen. This also won't invalidate any
484        / pointers since `Cell` makes sure nothing else will be pointing into
485        / either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
486        / so `swap` will just properly copy two full values of type `T` back and forth.
487        unsafe {
488            mem::swap(&mut *self.value.get(), &mut *other.value.get());
489        }
490    }
491
492    / Replaces the contained value with `val`, and returns the old contained value.
493    /
494    / # Examples
495    /
496    / ```
497    / use std::cell::Cell;
498    /
499    / let cell = Cell::new(5);
500    / assert_eq!(cell.get(), 5);
501    / assert_eq!(cell.replace(10), 5);
502    / assert_eq!(cell.get(), 10);
503    / ```
504    #[inline]
505    #[stable(feature = "move_cell", since = "1.17.0")]
506    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
507    #[rustc_confusables("swap")]
508    pub const fn replace(&self, val: T) -> T {
509        / SAFETY: This can cause data races if called from a separate thread,
510        / but `Cell` is `!Sync` so this won't happen.
511        mem::replace(unsafe { &mut *self.value.get() }, val)
512    }
513
514    / Unwraps the value, consuming the cell.
515    /
516    / # Examples
517    /
518    / ```
519    / use std::cell::Cell;
520    /
521    / let c = Cell::new(5);
522    / let five = c.into_inner();
523    /
524    / assert_eq!(five, 5);
525    / ```
526    #[stable(feature = "move_cell", since = "1.17.0")]
527    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
528    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
529    pub const fn into_inner(self) -> T {
530        self.value.into_inner()
531    }
532}
533
534impl<T: Copy> Cell<T> {
535    / Returns a copy of the contained value.
536    /
537    / # Examples
538    /
539    / ```
540    / use std::cell::Cell;
541    /
542    / let c = Cell::new(5);
543    /
544    / let five = c.get();
545    / ```
546    #[inline]
547    #[stable(feature = "rust1", since = "1.0.0")]
548    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
549    pub const fn get(&self) -> T {
550        / SAFETY: This can cause data races if called from a separate thread,
551        / but `Cell` is `!Sync` so this won't happen.
552        unsafe { *self.value.get() }
553    }
554
555    / Updates the contained value using a function.
556    /
557    / # Examples
558    /
559    / ```
560    / use std::cell::Cell;
561    /
562    / let c = Cell::new(5);
563    / c.update(|x| x + 1);
564    / assert_eq!(c.get(), 6);
565    / ```
566    #[inline]
567    #[stable(feature = "cell_update", since = "1.88.0")]
568    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
569    pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
570    where
571        / FIXME(const-hack): `Copy` should imply `const Destruct`
572        T: [const] Destruct,
573    {
574        let old = self.get();
575        self.set(f(old));
576    }
577}
578
579impl<T: ?Sized> Cell<T> {
580    / Returns a raw pointer to the underlying data in this cell.
581    /
582    / # Examples
583    /
584    / ```
585    / use std::cell::Cell;
586    /
587    / let c = Cell::new(5);
588    /
589    / let ptr = c.as_ptr();
590    / ```
591    #[inline]
592    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
593    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
594    #[rustc_as_ptr]
595    #[rustc_never_returns_null_ptr]
596    pub const fn as_ptr(&self) -> *mut T {
597        self.value.get()
598    }
599
600    / Returns a mutable reference to the underlying data.
601    /
602    / This call borrows `Cell` mutably (at compile-time) which guarantees
603    / that we possess the only reference.
604    /
605    / However be cautious: this method expects `self` to be mutable, which is
606    / generally not the case when using a `Cell`. If you require interior
607    / mutability by reference, consider using `RefCell` which provides
608    / run-time checked mutable borrows through its [`borrow_mut`] method.
609    /
610    / [`borrow_mut`]: RefCell::borrow_mut()
611    /
612    / # Examples
613    /
614    / ```
615    / use std::cell::Cell;
616    /
617    / let mut c = Cell::new(5);
618    / *c.get_mut() += 1;
619    /
620    / assert_eq!(c.get(), 6);
621    / ```
622    #[inline]
623    #[stable(feature = "cell_get_mut", since = "1.11.0")]
624    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
625    pub const fn get_mut(&mut self) -> &mut T {
626        self.value.get_mut()
627    }
628
629    / Returns a `&Cell<T>` from a `&mut T`
630    /
631    / # Examples
632    /
633    / ```
634    / use std::cell::Cell;
635    /
636    / let slice: &mut [i32] = &mut [1, 2, 3];
637    / let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
638    / let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
639    /
640    / assert_eq!(slice_cell.len(), 3);
641    / ```
642    #[inline]
643    #[stable(feature = "as_cell", since = "1.37.0")]
644    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
645    pub const fn from_mut(t: &mut T) -> &Cell<T> {
646        / SAFETY: `&mut` ensures unique access.
647        unsafe { &*(t as *mut T as *const Cell<T>) }
648    }
649}
650
651impl<T: Default> Cell<T> {
652    / Takes the value of the cell, leaving `Default::default()` in its place.
653    /
654    / # Examples
655    /
656    / ```
657    / use std::cell::Cell;
658    /
659    / let c = Cell::new(5);
660    / let five = c.take();
661    /
662    / assert_eq!(five, 5);
663    / assert_eq!(c.into_inner(), 0);
664    / ```
665    #[stable(feature = "move_cell", since = "1.17.0")]
666    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
667    pub const fn take(&self) -> T
668    where
669        T: [const] Default,
670    {
671        self.replace(Default::default())
672    }
673}
674
675#[unstable(feature = "coerce_unsized", issue = "18598")]
676impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
677
678/ Allow types that wrap `Cell` to also implement `DispatchFromDyn`
679/ and become dyn-compatible method receivers.
680/ Note that currently `Cell` itself cannot be a method receiver
681/ because it does not implement Deref.
682/ In other words:
683/ `self: Cell<&Self>` won't work
684/ `self: CellWrapper<Self>` becomes possible
685#[unstable(feature = "dispatch_from_dyn", issue = "none")]
686impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
687
688impl<T> Cell<[T]> {
689    / Returns a `&[Cell<T>]` from a `&Cell<[T]>`
690    /
691    / # Examples
692    /
693    / ```
694    / use std::cell::Cell;
695    /
696    / let slice: &mut [i32] = &mut [1, 2, 3];
697    / let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
698    / let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
699    /
700    / assert_eq!(slice_cell.len(), 3);
701    / ```
702    #[stable(feature = "as_cell", since = "1.37.0")]
703    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
704    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
705        / SAFETY: `Cell<T>` has the same memory layout as `T`.
706        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
707    }
708}
709
710impl<T, const N: usize> Cell<[T; N]> {
711    / Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
712    /
713    / # Examples
714    /
715    / ```
716    / use std::cell::Cell;
717    /
718    / let mut array: [i32; 3] = [1, 2, 3];
719    / let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
720    / let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
721    / ```
722    #[stable(feature = "as_array_of_cells", since = "1.91.0")]
723    #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
724    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
725        / SAFETY: `Cell<T>` has the same memory layout as `T`.
726        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
727    }
728}
729
730/ Types for which cloning `Cell<Self>` is sound.
731/
732/ # Safety
733/
734/ Implementing this trait for a type is sound if and only if the following code is sound for T =
735/ that type.
736/
737/ ```
738/ #![feature(cell_get_cloned)]
739/ # use std::cell::{CloneFromCell, Cell};
740/ fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
741/     unsafe { T::clone(&*cell.as_ptr()) }
742/ }
743/ ```
744/
745/ Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
746/ following is unsound:
747/
748/ ```rust
749/ #![feature(cell_get_cloned)]
750/ # use std::cell::Cell;
751/
752/ #[derive(Copy, Debug)]
753/ pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
754/
755/ impl Clone for Bad<'_> {
756/     fn clone(&self) -> Self {
757/         let a: &u8 = &self.1;
758/         / when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
759/         / it -- this is UB
760/         self.0.unwrap().set(Self(None, 1));
761/         dbg!((a, self));
762/         Self(None, 0)
763/     }
764/ }
765/
766/ / this is not sound
767/ / unsafe impl CloneFromCell for Bad<'_> {}
768/ ```
769#[unstable(feature = "cell_get_cloned", issue = "145329")]
770/ Allow potential overlapping implementations in user code
771#[marker]
772pub unsafe trait CloneFromCell: Clone {}
773
774/ `CloneFromCell` can be implemented for types that don't have indirection and which don't access
775/ `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
776#[unstable(feature = "cell_get_cloned", issue = "145329")]
777unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
778#[unstable(feature = "cell_get_cloned", issue = "145329")]
779unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
780#[unstable(feature = "cell_get_cloned", issue = "145329")]
781unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
782#[unstable(feature = "cell_get_cloned", issue = "145329")]
783unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
784#[unstable(feature = "cell_get_cloned", issue = "145329")]
785unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
786#[unstable(feature = "cell_get_cloned", issue = "145329")]
787unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
788#[unstable(feature = "cell_get_cloned", issue = "145329")]
789unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
790
791#[unstable(feature = "cell_get_cloned", issue = "145329")]
792impl<T: CloneFromCell> Cell<T> {
793    / Get a clone of the `Cell` that contains a copy of the original value.
794    /
795    / This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
796    / cheaper `clone()` method.
797    /
798    / # Examples
799    /
800    / ```
801    / #![feature(cell_get_cloned)]
802    /
803    / use core::cell::Cell;
804    / use std::rc::Rc;
805    /
806    / let rc = Rc::new(1usize);
807    / let c1 = Cell::new(rc);
808    / let c2 = c1.get_cloned();
809    / assert_eq!(*c2.into_inner(), 1);
810    / ```
811    pub fn get_cloned(&self) -> Self {
812        / SAFETY: T is CloneFromCell, which guarantees that this is sound.
813        Cell::new(T::clone(unsafe { &*self.as_ptr() }))
814    }
815}
816
817/ A mutable memory location with dynamically checked borrow rules
818/
819/ See the [module-level documentation](self) for more.
820#[rustc_diagnostic_item = "RefCell"]
821#[stable(feature = "rust1", since = "1.0.0")]
822pub struct RefCell<T: ?Sized> {
823    borrow: Cell<BorrowCounter>,
824    / Stores the location of the earliest currently active borrow.
825    / This gets updated whenever we go from having zero borrows
826    / to having a single borrow. When a borrow occurs, this gets included
827    / in the generated `BorrowError`/`BorrowMutError`
828    #[cfg(feature = "debug_refcell")]
829    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
830    value: UnsafeCell<T>,
831}
832
833/ An error returned by [`RefCell::try_borrow`].
834#[stable(feature = "try_borrow", since = "1.13.0")]
835#[non_exhaustive]
836#[derive(Debug)]
837pub struct BorrowError {
838    #[cfg(feature = "debug_refcell")]
839    location: &'static crate::panic::Location<'static>,
840}
841
842#[stable(feature = "try_borrow", since = "1.13.0")]
843impl Display for BorrowError {
844    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
845        #[cfg(feature = "debug_refcell")]
846        let res = write!(
847            f,
848            "RefCell already mutably borrowed; a previous borrow was at {}",
849            self.location
850        );
851
852        #[cfg(not(feature = "debug_refcell"))]
853        let res = Display::fmt("RefCell already mutably borrowed", f);
854
855        res
856    }
857}
858
859/ An error returned by [`RefCell::try_borrow_mut`].
860#[stable(feature = "try_borrow", since = "1.13.0")]
861#[non_exhaustive]
862#[derive(Debug)]
863pub struct BorrowMutError {
864    #[cfg(feature = "debug_refcell")]
865    location: &'static crate::panic::Location<'static>,
866}
867
868#[stable(feature = "try_borrow", since = "1.13.0")]
869impl Display for BorrowMutError {
870    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
871        #[cfg(feature = "debug_refcell")]
872        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
873
874        #[cfg(not(feature = "debug_refcell"))]
875        let res = Display::fmt("RefCell already borrowed", f);
876
877        res
878    }
879}
880
881/ This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
882#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
883#[track_caller]
884#[cold]
885const fn panic_already_borrowed(err: BorrowMutError) -> ! {
886    const_panic!(
887        "RefCell already borrowed",
888        "{err}",
889        err: BorrowMutError = err,
890    )
891}
892
893/ This ensures the panicking code is outlined from `borrow` for `RefCell`.
894#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
895#[track_caller]
896#[cold]
897const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
898    const_panic!(
899        "RefCell already mutably borrowed",
900        "{err}",
901        err: BorrowError = err,
902    )
903}
904
905/ Positive values represent the number of `Ref` active. Negative values
906/ represent the number of `RefMut` active. Multiple `RefMut`s can only be
907/ active at a time if they refer to distinct, nonoverlapping components of a
908/ `RefCell` (e.g., different ranges of a slice).
909/
910/ `Ref` and `RefMut` are both two words in size, and so there will likely never
911/ be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
912/ range. Thus, a `BorrowCounter` will probably never overflow or underflow.
913/ However, this is not a guarantee, as a pathological program could repeatedly
914/ create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
915/ explicitly check for overflow and underflow in order to avoid unsafety, or at
916/ least behave correctly in the event that overflow or underflow happens (e.g.,
917/ see BorrowRef::new).
918type BorrowCounter = isize;
919const UNUSED: BorrowCounter = 0;
920
921#[inline(always)]
922const fn is_writing(x: BorrowCounter) -> bool {
923    x < UNUSED
924}
925
926#[inline(always)]
927const fn is_reading(x: BorrowCounter) -> bool {
928    x > UNUSED
929}
930
931impl<T> RefCell<T> {
932    / Creates a new `RefCell` containing `value`.
933    /
934    / # Examples
935    /
936    / ```
937    / use std::cell::RefCell;
938    /
939    / let c = RefCell::new(5);
940    / ```
941    #[stable(feature = "rust1", since = "1.0.0")]
942    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
943    #[inline]
944    pub const fn new(value: T) -> RefCell<T> {
945        RefCell {
946            value: UnsafeCell::new(value),
947            borrow: Cell::new(UNUSED),
948            #[cfg(feature = "debug_refcell")]
949            borrowed_at: Cell::new(None),
950        }
951    }
952
953    / Consumes the `RefCell`, returning the wrapped value.
954    /
955    / # Examples
956    /
957    / ```
958    / use std::cell::RefCell;
959    /
960    / let c = RefCell::new(5);
961    /
962    / let five = c.into_inner();
963    / ```
964    #[stable(feature = "rust1", since = "1.0.0")]
965    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
966    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
967    #[inline]
968    pub const fn into_inner(self) -> T {
969        / Since this function takes `self` (the `RefCell`) by value, the
970        / compiler statically verifies that it is not currently borrowed.
971        self.value.into_inner()
972    }
973
974    / Replaces the wrapped value with a new one, returning the old value,
975    / without deinitializing either one.
976    /
977    / This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
978    /
979    / # Panics
980    /
981    / Panics if the value is currently borrowed.
982    /
983    / # Examples
984    /
985    / ```
986    / use std::cell::RefCell;
987    / let cell = RefCell::new(5);
988    / let old_value = cell.replace(6);
989    / assert_eq!(old_value, 5);
990    / assert_eq!(cell, RefCell::new(6));
991    / ```
992    #[inline]
993    #[stable(feature = "refcell_replace", since = "1.24.0")]
994    #[track_caller]
995    #[rustc_confusables("swap")]
996    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
997    pub const fn replace(&self, t: T) -> T {
998        mem::replace(&mut self.borrow_mut(), t)
999    }
1000
1001    / Replaces the wrapped value with a new one computed from `f`, returning
1002    / the old value, without deinitializing either one.
1003    /
1004    / # Panics
1005    /
1006    / Panics if the value is currently borrowed.
1007    /
1008    / # Examples
1009    /
1010    / ```
1011    / use std::cell::RefCell;
1012    / let cell = RefCell::new(5);
1013    / let old_value = cell.replace_with(|&mut old| old + 1);
1014    / assert_eq!(old_value, 5);
1015    / assert_eq!(cell, RefCell::new(6));
1016    / ```
1017    #[inline]
1018    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1019    #[track_caller]
1020    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1021        let mut_borrow = &mut *self.borrow_mut();
1022        let replacement = f(mut_borrow);
1023        mem::replace(mut_borrow, replacement)
1024    }
1025
1026    / Swaps the wrapped value of `self` with the wrapped value of `other`,
1027    / without deinitializing either one.
1028    /
1029    / This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1030    /
1031    / # Panics
1032    /
1033    / Panics if the value in either `RefCell` is currently borrowed, or
1034    / if `self` and `other` point to the same `RefCell`.
1035    /
1036    / # Examples
1037    /
1038    / ```
1039    / use std::cell::RefCell;
1040    / let c = RefCell::new(5);
1041    / let d = RefCell::new(6);
1042    / c.swap(&d);
1043    / assert_eq!(c, RefCell::new(6));
1044    / assert_eq!(d, RefCell::new(5));
1045    / ```
1046    #[inline]
1047    #[stable(feature = "refcell_swap", since = "1.24.0")]
1048    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1049    pub const fn swap(&self, other: &Self) {
1050        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1051    }
1052}
1053
1054impl<T: ?Sized> RefCell<T> {
1055    / Immutably borrows the wrapped value.
1056    /
1057    / The borrow lasts until the returned `Ref` exits scope. Multiple
1058    / immutable borrows can be taken out at the same time.
1059    /
1060    / # Panics
1061    /
1062    / Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1063    / [`try_borrow`](#method.try_borrow).
1064    /
1065    / # Examples
1066    /
1067    / ```
1068    / use std::cell::RefCell;
1069    /
1070    / let c = RefCell::new(5);
1071    /
1072    / let borrowed_five = c.borrow();
1073    / let borrowed_five2 = c.borrow();
1074    / ```
1075    /
1076    / An example of panic:
1077    /
1078    / ```should_panic
1079    / use std::cell::RefCell;
1080    /
1081    / let c = RefCell::new(5);
1082    /
1083    / let m = c.borrow_mut();
1084    / let b = c.borrow(); / this causes a panic
1085    / ```
1086    #[stable(feature = "rust1", since = "1.0.0")]
1087    #[inline]
1088    #[track_caller]
1089    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1090    pub const fn borrow(&self) -> Ref<'_, T> {
1091        match self.try_borrow() {
1092            Ok(b) => b,
1093            Err(err) => panic_already_mutably_borrowed(err),
1094        }
1095    }
1096
1097    / Immutably borrows the wrapped value, returning an error if the value is currently mutably
1098    / borrowed.
1099    /
1100    / The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1101    / taken out at the same time.
1102    /
1103    / This is the non-panicking variant of [`borrow`](#method.borrow).
1104    /
1105    / # Examples
1106    /
1107    / ```
1108    / use std::cell::RefCell;
1109    /
1110    / let c = RefCell::new(5);
1111    /
1112    / {
1113    /     let m = c.borrow_mut();
1114    /     assert!(c.try_borrow().is_err());
1115    / }
1116    /
1117    / {
1118    /     let m = c.borrow();
1119    /     assert!(c.try_borrow().is_ok());
1120    / }
1121    / ```
1122    #[stable(feature = "try_borrow", since = "1.13.0")]
1123    #[inline]
1124    #[cfg_attr(feature = "debug_refcell", track_caller)]
1125    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1126    pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1127        match BorrowRef::new(&self.borrow) {
1128            Some(b) => {
1129                #[cfg(feature = "debug_refcell")]
1130                {
1131                    / `borrowed_at` is always the *first* active borrow
1132                    if b.borrow.get() == 1 {
1133                        self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1134                    }
1135                }
1136
1137                / SAFETY: `BorrowRef` ensures that there is only immutable access
1138                / to the value while borrowed.
1139                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1140                Ok(Ref { value, borrow: b })
1141            }
1142            None => Err(BorrowError {
1143                / If a borrow occurred, then we must already have an outstanding borrow,
1144                / so `borrowed_at` will be `Some`
1145                #[cfg(feature = "debug_refcell")]
1146                location: self.borrowed_at.get().unwrap(),
1147            }),
1148        }
1149    }
1150
1151    / Mutably borrows the wrapped value.
1152    /
1153    / The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1154    / from it exit scope. The value cannot be borrowed while this borrow is
1155    / active.
1156    /
1157    / # Panics
1158    /
1159    / Panics if the value is currently borrowed. For a non-panicking variant, use
1160    / [`try_borrow_mut`](#method.try_borrow_mut).
1161    /
1162    / # Examples
1163    /
1164    / ```
1165    / use std::cell::RefCell;
1166    /
1167    / let c = RefCell::new("hello".to_owned());
1168    /
1169    / *c.borrow_mut() = "bonjour".to_owned();
1170    /
1171    / assert_eq!(&*c.borrow(), "bonjour");
1172    / ```
1173    /
1174    / An example of panic:
1175    /
1176    / ```should_panic
1177    / use std::cell::RefCell;
1178    /
1179    / let c = RefCell::new(5);
1180    / let m = c.borrow();
1181    /
1182    / let b = c.borrow_mut(); / this causes a panic
1183    / ```
1184    #[stable(feature = "rust1", since = "1.0.0")]
1185    #[inline]
1186    #[track_caller]
1187    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1188    pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1189        match self.try_borrow_mut() {
1190            Ok(b) => b,
1191            Err(err) => panic_already_borrowed(err),
1192        }
1193    }
1194
1195    / Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1196    /
1197    / The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1198    / from it exit scope. The value cannot be borrowed while this borrow is
1199    / active.
1200    /
1201    / This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1202    /
1203    / # Examples
1204    /
1205    / ```
1206    / use std::cell::RefCell;
1207    /
1208    / let c = RefCell::new(5);
1209    /
1210    / {
1211    /     let m = c.borrow();
1212    /     assert!(c.try_borrow_mut().is_err());
1213    / }
1214    /
1215    / assert!(c.try_borrow_mut().is_ok());
1216    / ```
1217    #[stable(feature = "try_borrow", since = "1.13.0")]
1218    #[inline]
1219    #[cfg_attr(feature = "debug_refcell", track_caller)]
1220    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1221    pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1222        match BorrowRefMut::new(&self.borrow) {
1223            Some(b) => {
1224                #[cfg(feature = "debug_refcell")]
1225                {
1226                    self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1227                }
1228
1229                / SAFETY: `BorrowRefMut` guarantees unique access.
1230                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1231                Ok(RefMut { value, borrow: b, marker: PhantomData })
1232            }
1233            None => Err(BorrowMutError {
1234                / If a borrow occurred, then we must already have an outstanding borrow,
1235                / so `borrowed_at` will be `Some`
1236                #[cfg(feature = "debug_refcell")]
1237                location: self.borrowed_at.get().unwrap(),
1238            }),
1239        }
1240    }
1241
1242    / Returns a raw pointer to the underlying data in this cell.
1243    /
1244    / # Examples
1245    /
1246    / ```
1247    / use std::cell::RefCell;
1248    /
1249    / let c = RefCell::new(5);
1250    /
1251    / let ptr = c.as_ptr();
1252    / ```
1253    #[inline]
1254    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1255    #[rustc_as_ptr]
1256    #[rustc_never_returns_null_ptr]
1257    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1258    pub const fn as_ptr(&self) -> *mut T {
1259        self.value.get()
1260    }
1261
1262    / Returns a mutable reference to the underlying data.
1263    /
1264    / Since this method borrows `RefCell` mutably, it is statically guaranteed
1265    / that no borrows to the underlying data exist. The dynamic checks inherent
1266    / in [`borrow_mut`] and most other methods of `RefCell` are therefore
1267    / unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1268    / (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1269    / consider using the unstable [`undo_leak`] method.
1270    /
1271    / This method can only be called if `RefCell` can be mutably borrowed,
1272    / which in general is only the case directly after the `RefCell` has
1273    / been created. In these situations, skipping the aforementioned dynamic
1274    / borrowing checks may yield better ergonomics and runtime-performance.
1275    /
1276    / In most situations where `RefCell` is used, it can't be borrowed mutably.
1277    / Use [`borrow_mut`] to get mutable access to the underlying data then.
1278    /
1279    / [`borrow_mut`]: RefCell::borrow_mut()
1280    / [`forget()`]: mem::forget
1281    / [`undo_leak`]: RefCell::undo_leak()
1282    /
1283    / # Examples
1284    /
1285    / ```
1286    / use std::cell::RefCell;
1287    /
1288    / let mut c = RefCell::new(5);
1289    / *c.get_mut() += 1;
1290    /
1291    / assert_eq!(c, RefCell::new(6));
1292    / ```
1293    #[inline]
1294    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1295    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1296    pub const fn get_mut(&mut self) -> &mut T {
1297        self.value.get_mut()
1298    }
1299
1300    / Undo the effect of leaked guards on the borrow state of the `RefCell`.
1301    /
1302    / This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1303    / ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1304    / if some `Ref` or `RefMut` borrows have been leaked.
1305    /
1306    / [`get_mut`]: RefCell::get_mut()
1307    /
1308    / # Examples
1309    /
1310    / ```
1311    / #![feature(cell_leak)]
1312    / use std::cell::RefCell;
1313    /
1314    / let mut c = RefCell::new(0);
1315    / std::mem::forget(c.borrow_mut());
1316    /
1317    / assert!(c.try_borrow().is_err());
1318    / c.undo_leak();
1319    / assert!(c.try_borrow().is_ok());
1320    / ```
1321    #[unstable(feature = "cell_leak", issue = "69099")]
1322    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1323    pub const fn undo_leak(&mut self) -> &mut T {
1324        *self.borrow.get_mut() = UNUSED;
1325        self.get_mut()
1326    }
1327
1328    / Immutably borrows the wrapped value, returning an error if the value is
1329    / currently mutably borrowed.
1330    /
1331    / # Safety
1332    /
1333    / Unlike `RefCell::borrow`, this method is unsafe because it does not
1334    / return a `Ref`, thus leaving the borrow flag untouched. Mutably
1335    / borrowing the `RefCell` while the reference returned by this method
1336    / is alive is undefined behavior.
1337    /
1338    / # Examples
1339    /
1340    / ```
1341    / use std::cell::RefCell;
1342    /
1343    / let c = RefCell::new(5);
1344    /
1345    / {
1346    /     let m = c.borrow_mut();
1347    /     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1348    / }
1349    /
1350    / {
1351    /     let m = c.borrow();
1352    /     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1353    / }
1354    / ```
1355    #[stable(feature = "borrow_state", since = "1.37.0")]
1356    #[inline]
1357    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1358    pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1359        if !is_writing(self.borrow.get()) {
1360            / SAFETY: We check that nobody is actively writing now, but it is
1361            / the caller's responsibility to ensure that nobody writes until
1362            / the returned reference is no longer in use.
1363            / Also, `self.value.get()` refers to the value owned by `self`
1364            / and is thus guaranteed to be valid for the lifetime of `self`.
1365            Ok(unsafe { &*self.value.get() })
1366        } else {
1367            Err(BorrowError {
1368                / If a borrow occurred, then we must already have an outstanding borrow,
1369                / so `borrowed_at` will be `Some`
1370                #[cfg(feature = "debug_refcell")]
1371                location: self.borrowed_at.get().unwrap(),
1372            })
1373        }
1374    }
1375}
1376
1377impl<T: Default> RefCell<T> {
1378    / Takes the wrapped value, leaving `Default::default()` in its place.
1379    /
1380    / # Panics
1381    /
1382    / Panics if the value is currently borrowed.
1383    /
1384    / # Examples
1385    /
1386    / ```
1387    / use std::cell::RefCell;
1388    /
1389    / let c = RefCell::new(5);
1390    / let five = c.take();
1391    /
1392    / assert_eq!(five, 5);
1393    / assert_eq!(c.into_inner(), 0);
1394    / ```
1395    #[stable(feature = "refcell_take", since = "1.50.0")]
1396    pub fn take(&self) -> T {
1397        self.replace(Default::default())
1398    }
1399}
1400
1401#[stable(feature = "rust1", since = "1.0.0")]
1402unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1403
1404#[stable(feature = "rust1", since = "1.0.0")]
1405impl<T: ?Sized> !Sync for RefCell<T> {}
1406
1407#[stable(feature = "rust1", since = "1.0.0")]
1408impl<T: Clone> Clone for RefCell<T> {
1409    / # Panics
1410    /
1411    / Panics if the value is currently mutably borrowed.
1412    #[inline]
1413    #[track_caller]
1414    fn clone(&self) -> RefCell<T> {
1415        RefCell::new(self.borrow().clone())
1416    }
1417
1418    / # Panics
1419    /
1420    / Panics if `source` is currently mutably borrowed.
1421    #[inline]
1422    #[track_caller]
1423    fn clone_from(&mut self, source: &Self) {
1424        self.get_mut().clone_from(&source.borrow())
1425    }
1426}
1427
1428#[stable(feature = "rust1", since = "1.0.0")]
1429#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1430impl<T: [const] Default> const Default for RefCell<T> {
1431    / Creates a `RefCell<T>`, with the `Default` value for T.
1432    #[inline]
1433    fn default() -> RefCell<T> {
1434        RefCell::new(Default::default())
1435    }
1436}
1437
1438#[stable(feature = "rust1", since = "1.0.0")]
1439impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1440    / # Panics
1441    /
1442    / Panics if the value in either `RefCell` is currently mutably borrowed.
1443    #[inline]
1444    fn eq(&self, other: &RefCell<T>) -> bool {
1445        *self.borrow() == *other.borrow()
1446    }
1447}
1448
1449#[stable(feature = "cell_eq", since = "1.2.0")]
1450impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1451
1452#[stable(feature = "cell_ord", since = "1.10.0")]
1453impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1454    / # Panics
1455    /
1456    / Panics if the value in either `RefCell` is currently mutably borrowed.
1457    #[inline]
1458    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1459        self.borrow().partial_cmp(&*other.borrow())
1460    }
1461
1462    / # Panics
1463    /
1464    / Panics if the value in either `RefCell` is currently mutably borrowed.
1465    #[inline]
1466    fn lt(&self, other: &RefCell<T>) -> bool {
1467        *self.borrow() < *other.borrow()
1468    }
1469
1470    / # Panics
1471    /
1472    / Panics if the value in either `RefCell` is currently mutably borrowed.
1473    #[inline]
1474    fn le(&self, other: &RefCell<T>) -> bool {
1475        *self.borrow() <= *other.borrow()
1476    }
1477
1478    / # Panics
1479    /
1480    / Panics if the value in either `RefCell` is currently mutably borrowed.
1481    #[inline]
1482    fn gt(&self, other: &RefCell<T>) -> bool {
1483        *self.borrow() > *other.borrow()
1484    }
1485
1486    / # Panics
1487    /
1488    / Panics if the value in either `RefCell` is currently mutably borrowed.
1489    #[inline]
1490    fn ge(&self, other: &RefCell<T>) -> bool {
1491        *self.borrow() >= *other.borrow()
1492    }
1493}
1494
1495#[stable(feature = "cell_ord", since = "1.10.0")]
1496impl<T: ?Sized + Ord> Ord for RefCell<T> {
1497    / # Panics
1498    /
1499    / Panics if the value in either `RefCell` is currently mutably borrowed.
1500    #[inline]
1501    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1502        self.borrow().cmp(&*other.borrow())
1503    }
1504}
1505
1506#[stable(feature = "cell_from", since = "1.12.0")]
1507#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1508impl<T> const From<T> for RefCell<T> {
1509    / Creates a new `RefCell<T>` containing the given value.
1510    fn from(t: T) -> RefCell<T> {
1511        RefCell::new(t)
1512    }
1513}
1514
1515#[unstable(feature = "coerce_unsized", issue = "18598")]
1516impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1517
1518struct BorrowRef<'b> {
1519    borrow: &'b Cell<BorrowCounter>,
1520}
1521
1522impl<'b> BorrowRef<'b> {
1523    #[inline]
1524    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1525        let b = borrow.get().wrapping_add(1);
1526        if !is_reading(b) {
1527            / Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1528            / 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1529            /    due to Rust's reference aliasing rules
1530            / 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1531            /    into isize::MIN (the max amount of writing borrows) so we can't allow
1532            /    an additional read borrow because isize can't represent so many read borrows
1533            /    (this can only happen if you mem::forget more than a small constant amount of
1534            /    `Ref`s, which is not good practice)
1535            None
1536        } else {
1537            / Incrementing borrow can result in a reading value (> 0) in these cases:
1538            / 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1539            / 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1540            /    is large enough to represent having one more read borrow
1541            borrow.replace(b);
1542            Some(BorrowRef { borrow })
1543        }
1544    }
1545}
1546
1547#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1548impl const Drop for BorrowRef<'_> {
1549    #[inline]
1550    fn drop(&mut self) {
1551        let borrow = self.borrow.get();
1552        debug_assert!(is_reading(borrow));
1553        self.borrow.replace(borrow - 1);
1554    }
1555}
1556
1557#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1558impl const Clone for BorrowRef<'_> {
1559    #[inline]
1560    fn clone(&self) -> Self {
1561        / Since this Ref exists, we know the borrow flag
1562        / is a reading borrow.
1563        let borrow = self.borrow.get();
1564        debug_assert!(is_reading(borrow));
1565        / Prevent the borrow counter from overflowing into
1566        / a writing borrow.
1567        assert!(borrow != BorrowCounter::MAX);
1568        self.borrow.replace(borrow + 1);
1569        BorrowRef { borrow: self.borrow }
1570    }
1571}
1572
1573/ Wraps a borrowed reference to a value in a `RefCell` box.
1574/ A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1575/
1576/ See the [module-level documentation](self) for more.
1577#[stable(feature = "rust1", since = "1.0.0")]
1578#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1579#[rustc_diagnostic_item = "RefCellRef"]
1580pub struct Ref<'b, T: ?Sized + 'b> {
1581    / NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1582    / `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1583    / `NonNull` is also covariant over `T`, just like we would have with `&T`.
1584    value: NonNull<T>,
1585    borrow: BorrowRef<'b>,
1586}
1587
1588#[stable(feature = "rust1", since = "1.0.0")]
1589#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1590impl<T: ?Sized> const Deref for Ref<'_, T> {
1591    type Target = T;
1592
1593    #[inline]
1594    fn deref(&self) -> &T {
1595        / SAFETY: the value is accessible as long as we hold our borrow.
1596        unsafe { self.value.as_ref() }
1597    }
1598}
1599
1600#[unstable(feature = "deref_pure_trait", issue = "87121")]
1601unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1602
1603impl<'b, T: ?Sized> Ref<'b, T> {
1604    / Copies a `Ref`.
1605    /
1606    / The `RefCell` is already immutably borrowed, so this cannot fail.
1607    /
1608    / This is an associated function that needs to be used as
1609    / `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1610    / with the widespread use of `r.borrow().clone()` to clone the contents of
1611    / a `RefCell`.
1612    #[stable(feature = "cell_extras", since = "1.15.0")]
1613    #[must_use]
1614    #[inline]
1615    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1616    pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1617        Ref { value: orig.value, borrow: orig.borrow.clone() }
1618    }
1619
1620    / Makes a new `Ref` for a component of the borrowed data.
1621    /
1622    / The `RefCell` is already immutably borrowed, so this cannot fail.
1623    /
1624    / This is an associated function that needs to be used as `Ref::map(...)`.
1625    / A method would interfere with methods of the same name on the contents
1626    / of a `RefCell` used through `Deref`.
1627    /
1628    / # Examples
1629    /
1630    / ```
1631    / use std::cell::{RefCell, Ref};
1632    /
1633    / let c = RefCell::new((5, 'b'));
1634    / let b1: Ref<'_, (u32, char)> = c.borrow();
1635    / let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1636    / assert_eq!(*b2, 5)
1637    / ```
1638    #[stable(feature = "cell_map", since = "1.8.0")]
1639    #[inline]
1640    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1641    where
1642        F: FnOnce(&T) -> &U,
1643    {
1644        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1645    }
1646
1647    / Makes a new `Ref` for an optional component of the borrowed data. The
1648    / original guard is returned as an `Err(..)` if the closure returns
1649    / `None`.
1650    /
1651    / The `RefCell` is already immutably borrowed, so this cannot fail.
1652    /
1653    / This is an associated function that needs to be used as
1654    / `Ref::filter_map(...)`. A method would interfere with methods of the same
1655    / name on the contents of a `RefCell` used through `Deref`.
1656    /
1657    / # Examples
1658    /
1659    / ```
1660    / use std::cell::{RefCell, Ref};
1661    /
1662    / let c = RefCell::new(vec![1, 2, 3]);
1663    / let b1: Ref<'_, Vec<u32>> = c.borrow();
1664    / let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1665    / assert_eq!(*b2.unwrap(), 2);
1666    / ```
1667    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1668    #[inline]
1669    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1670    where
1671        F: FnOnce(&T) -> Option<&U>,
1672    {
1673        match f(&*orig) {
1674            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1675            None => Err(orig),
1676        }
1677    }
1678
1679    / Tries to makes a new `Ref` for a component of the borrowed data.
1680    / On failure, the original guard is returned alongside with the error
1681    / returned by the closure.
1682    /
1683    / The `RefCell` is already immutably borrowed, so this cannot fail.
1684    /
1685    / This is an associated function that needs to be used as
1686    / `Ref::try_map(...)`. A method would interfere with methods of the same
1687    / name on the contents of a `RefCell` used through `Deref`.
1688    /
1689    / # Examples
1690    /
1691    / ```
1692    / #![feature(refcell_try_map)]
1693    / use std::cell::{RefCell, Ref};
1694    / use std::str::{from_utf8, Utf8Error};
1695    /
1696    / let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1697    / let b1: Ref<'_, Vec<u8>> = c.borrow();
1698    / let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1699    / assert_eq!(&*b2.unwrap(), "🦀");
1700    /
1701    / let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1702    / let b1: Ref<'_, Vec<u8>> = c.borrow();
1703    / let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1704    / let (b3, e) = b2.unwrap_err();
1705    / assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1706    / assert_eq!(e.valid_up_to(), 0);
1707    / ```
1708    #[unstable(feature = "refcell_try_map", issue = "143801")]
1709    #[inline]
1710    pub fn try_map<U: ?Sized, E>(
1711        orig: Ref<'b, T>,
1712        f: impl FnOnce(&T) -> Result<&U, E>,
1713    ) -> Result<Ref<'b, U>, (Self, E)> {
1714        match f(&*orig) {
1715            Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1716            Err(e) => Err((orig, e)),
1717        }
1718    }
1719
1720    / Splits a `Ref` into multiple `Ref`s for different components of the
1721    / borrowed data.
1722    /
1723    / The `RefCell` is already immutably borrowed, so this cannot fail.
1724    /
1725    / This is an associated function that needs to be used as
1726    / `Ref::map_split(...)`. A method would interfere with methods of the same
1727    / name on the contents of a `RefCell` used through `Deref`.
1728    /
1729    / # Examples
1730    /
1731    / ```
1732    / use std::cell::{Ref, RefCell};
1733    /
1734    / let cell = RefCell::new([1, 2, 3, 4]);
1735    / let borrow = cell.borrow();
1736    / let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1737    / assert_eq!(*begin, [1, 2]);
1738    / assert_eq!(*end, [3, 4]);
1739    / ```
1740    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1741    #[inline]
1742    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1743    where
1744        F: FnOnce(&T) -> (&U, &V),
1745    {
1746        let (a, b) = f(&*orig);
1747        let borrow = orig.borrow.clone();
1748        (
1749            Ref { value: NonNull::from(a), borrow },
1750            Ref { value: NonNull::from(b), borrow: orig.borrow },
1751        )
1752    }
1753
1754    / Converts into a reference to the underlying data.
1755    /
1756    / The underlying `RefCell` can never be mutably borrowed from again and will always appear
1757    / already immutably borrowed. It is not a good idea to leak more than a constant number of
1758    / references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1759    / have occurred in total.
1760    /
1761    / This is an associated function that needs to be used as
1762    / `Ref::leak(...)`. A method would interfere with methods of the
1763    / same name on the contents of a `RefCell` used through `Deref`.
1764    /
1765    / # Examples
1766    /
1767    / ```
1768    / #![feature(cell_leak)]
1769    / use std::cell::{RefCell, Ref};
1770    / let cell = RefCell::new(0);
1771    /
1772    / let value = Ref::leak(cell.borrow());
1773    / assert_eq!(*value, 0);
1774    /
1775    / assert!(cell.try_borrow().is_ok());
1776    / assert!(cell.try_borrow_mut().is_err());
1777    / ```
1778    #[unstable(feature = "cell_leak", issue = "69099")]
1779    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1780    pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1781        / By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1782        / UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1783        / unique reference to the borrowed RefCell. No further mutable references can be created
1784        / from the original cell.
1785        mem::forget(orig.borrow);
1786        / SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1787        unsafe { orig.value.as_ref() }
1788    }
1789}
1790
1791#[unstable(feature = "coerce_unsized", issue = "18598")]
1792impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1793
1794#[stable(feature = "std_guard_impls", since = "1.20.0")]
1795impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1796    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1797        (**self).fmt(f)
1798    }
1799}
1800
1801impl<'b, T: ?Sized> RefMut<'b, T> {
1802    / Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1803    / variant.
1804    /
1805    / The `RefCell` is already mutably borrowed, so this cannot fail.
1806    /
1807    / This is an associated function that needs to be used as
1808    / `RefMut::map(...)`. A method would interfere with methods of the same
1809    / name on the contents of a `RefCell` used through `Deref`.
1810    /
1811    / # Examples
1812    /
1813    / ```
1814    / use std::cell::{RefCell, RefMut};
1815    /
1816    / let c = RefCell::new((5, 'b'));
1817    / {
1818    /     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1819    /     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1820    /     assert_eq!(*b2, 5);
1821    /     *b2 = 42;
1822    / }
1823    / assert_eq!(*c.borrow(), (42, 'b'));
1824    / ```
1825    #[stable(feature = "cell_map", since = "1.8.0")]
1826    #[inline]
1827    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1828    where
1829        F: FnOnce(&mut T) -> &mut U,
1830    {
1831        let value = NonNull::from(f(&mut *orig));
1832        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1833    }
1834
1835    / Makes a new `RefMut` for an optional component of the borrowed data. The
1836    / original guard is returned as an `Err(..)` if the closure returns
1837    / `None`.
1838    /
1839    / The `RefCell` is already mutably borrowed, so this cannot fail.
1840    /
1841    / This is an associated function that needs to be used as
1842    / `RefMut::filter_map(...)`. A method would interfere with methods of the
1843    / same name on the contents of a `RefCell` used through `Deref`.
1844    /
1845    / # Examples
1846    /
1847    / ```
1848    / use std::cell::{RefCell, RefMut};
1849    /
1850    / let c = RefCell::new(vec![1, 2, 3]);
1851    /
1852    / {
1853    /     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1854    /     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1855    /
1856    /     if let Ok(mut b2) = b2 {
1857    /         *b2 += 2;
1858    /     }
1859    / }
1860    /
1861    / assert_eq!(*c.borrow(), vec![1, 4, 3]);
1862    / ```
1863    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1864    #[inline]
1865    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1866    where
1867        F: FnOnce(&mut T) -> Option<&mut U>,
1868    {
1869        / SAFETY: function holds onto an exclusive reference for the duration
1870        / of its call through `orig`, and the pointer is only de-referenced
1871        / inside of the function call never allowing the exclusive reference to
1872        / escape.
1873        match f(&mut *orig) {
1874            Some(value) => {
1875                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1876            }
1877            None => Err(orig),
1878        }
1879    }
1880
1881    / Tries to makes a new `RefMut` for a component of the borrowed data.
1882    / On failure, the original guard is returned alongside with the error
1883    / returned by the closure.
1884    /
1885    / The `RefCell` is already mutably borrowed, so this cannot fail.
1886    /
1887    / This is an associated function that needs to be used as
1888    / `RefMut::try_map(...)`. A method would interfere with methods of the same
1889    / name on the contents of a `RefCell` used through `Deref`.
1890    /
1891    / # Examples
1892    /
1893    / ```
1894    / #![feature(refcell_try_map)]
1895    / use std::cell::{RefCell, RefMut};
1896    / use std::str::{from_utf8_mut, Utf8Error};
1897    /
1898    / let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1899    / {
1900    /     let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1901    /     let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1902    /     let mut b2 = b2.unwrap();
1903    /     assert_eq!(&*b2, "hello");
1904    /     b2.make_ascii_uppercase();
1905    / }
1906    / assert_eq!(*c.borrow(), "HELLO".as_bytes());
1907    /
1908    / let c = RefCell::new(vec![0xFF]);
1909    / let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1910    / let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1911    / let (b3, e) = b2.unwrap_err();
1912    / assert_eq!(*b3, vec![0xFF]);
1913    / assert_eq!(e.valid_up_to(), 0);
1914    / ```
1915    #[unstable(feature = "refcell_try_map", issue = "143801")]
1916    #[inline]
1917    pub fn try_map<U: ?Sized, E>(
1918        mut orig: RefMut<'b, T>,
1919        f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1920    ) -> Result<RefMut<'b, U>, (Self, E)> {
1921        / SAFETY: function holds onto an exclusive reference for the duration
1922        / of its call through `orig`, and the pointer is only de-referenced
1923        / inside of the function call never allowing the exclusive reference to
1924        / escape.
1925        match f(&mut *orig) {
1926            Ok(value) => {
1927                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1928            }
1929            Err(e) => Err((orig, e)),
1930        }
1931    }
1932
1933    / Splits a `RefMut` into multiple `RefMut`s for different components of the
1934    / borrowed data.
1935    /
1936    / The underlying `RefCell` will remain mutably borrowed until both
1937    / returned `RefMut`s go out of scope.
1938    /
1939    / The `RefCell` is already mutably borrowed, so this cannot fail.
1940    /
1941    / This is an associated function that needs to be used as
1942    / `RefMut::map_split(...)`. A method would interfere with methods of the
1943    / same name on the contents of a `RefCell` used through `Deref`.
1944    /
1945    / # Examples
1946    /
1947    / ```
1948    / use std::cell::{RefCell, RefMut};
1949    /
1950    / let cell = RefCell::new([1, 2, 3, 4]);
1951    / let borrow = cell.borrow_mut();
1952    / let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1953    / assert_eq!(*begin, [1, 2]);
1954    / assert_eq!(*end, [3, 4]);
1955    / begin.copy_from_slice(&[4, 3]);
1956    / end.copy_from_slice(&[2, 1]);
1957    / ```
1958    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1959    #[inline]
1960    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1961        mut orig: RefMut<'b, T>,
1962        f: F,
1963    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1964    where
1965        F: FnOnce(&mut T) -> (&mut U, &mut V),
1966    {
1967        let borrow = orig.borrow.clone();
1968        let (a, b) = f(&mut *orig);
1969        (
1970            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1971            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1972        )
1973    }
1974
1975    / Converts into a mutable reference to the underlying data.
1976    /
1977    / The underlying `RefCell` can not be borrowed from again and will always appear already
1978    / mutably borrowed, making the returned reference the only to the interior.
1979    /
1980    / This is an associated function that needs to be used as
1981    / `RefMut::leak(...)`. A method would interfere with methods of the
1982    / same name on the contents of a `RefCell` used through `Deref`.
1983    /
1984    / # Examples
1985    /
1986    / ```
1987    / #![feature(cell_leak)]
1988    / use std::cell::{RefCell, RefMut};
1989    / let cell = RefCell::new(0);
1990    /
1991    / let value = RefMut::leak(cell.borrow_mut());
1992    / assert_eq!(*value, 0);
1993    / *value = 1;
1994    /
1995    / assert!(cell.try_borrow_mut().is_err());
1996    / ```
1997    #[unstable(feature = "cell_leak", issue = "69099")]
1998    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1999    pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2000        / By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2001        / go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2002        / require a unique reference to the borrowed RefCell. No further references can be created
2003        / from the original cell within that lifetime, making the current borrow the only
2004        / reference for the remaining lifetime.
2005        mem::forget(orig.borrow);
2006        / SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2007        unsafe { orig.value.as_mut() }
2008    }
2009}
2010
2011struct BorrowRefMut<'b> {
2012    borrow: &'b Cell<BorrowCounter>,
2013}
2014
2015#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2016impl const Drop for BorrowRefMut<'_> {
2017    #[inline]
2018    fn drop(&mut self) {
2019        let borrow = self.borrow.get();
2020        debug_assert!(is_writing(borrow));
2021        self.borrow.replace(borrow + 1);
2022    }
2023}
2024
2025impl<'b> BorrowRefMut<'b> {
2026    #[inline]
2027    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2028        / NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2029        / mutable reference, and so there must currently be no existing
2030        / references. Thus, while clone increments the mutable refcount, here
2031        / we explicitly only allow going from UNUSED to UNUSED - 1.
2032        match borrow.get() {
2033            UNUSED => {
2034                borrow.replace(UNUSED - 1);
2035                Some(BorrowRefMut { borrow })
2036            }
2037            _ => None,
2038        }
2039    }
2040
2041    / Clones a `BorrowRefMut`.
2042    /
2043    / This is only valid if each `BorrowRefMut` is used to track a mutable
2044    / reference to a distinct, nonoverlapping range of the original object.
2045    / This isn't in a Clone impl so that code doesn't call this implicitly.
2046    #[inline]
2047    fn clone(&self) -> BorrowRefMut<'b> {
2048        let borrow = self.borrow.get();
2049        debug_assert!(is_writing(borrow));
2050        / Prevent the borrow counter from underflowing.
2051        assert!(borrow != BorrowCounter::MIN);
2052        self.borrow.set(borrow - 1);
2053        BorrowRefMut { borrow: self.borrow }
2054    }
2055}
2056
2057/ A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2058/
2059/ See the [module-level documentation](self) for more.
2060#[stable(feature = "rust1", since = "1.0.0")]
2061#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2062#[rustc_diagnostic_item = "RefCellRefMut"]
2063pub struct RefMut<'b, T: ?Sized + 'b> {
2064    / NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2065    / `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2066    value: NonNull<T>,
2067    borrow: BorrowRefMut<'b>,
2068    / `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2069    marker: PhantomData<&'b mut T>,
2070}
2071
2072#[stable(feature = "rust1", since = "1.0.0")]
2073#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2074impl<T: ?Sized> const Deref for RefMut<'_, T> {
2075    type Target = T;
2076
2077    #[inline]
2078    fn deref(&self) -> &T {
2079        / SAFETY: the value is accessible as long as we hold our borrow.
2080        unsafe { self.value.as_ref() }
2081    }
2082}
2083
2084#[stable(feature = "rust1", since = "1.0.0")]
2085#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2086impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2087    #[inline]
2088    fn deref_mut(&mut self) -> &mut T {
2089        / SAFETY: the value is accessible as long as we hold our borrow.
2090        unsafe { self.value.as_mut() }
2091    }
2092}
2093
2094#[unstable(feature = "deref_pure_trait", issue = "87121")]
2095unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2096
2097#[unstable(feature = "coerce_unsized", issue = "18598")]
2098impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2099
2100#[stable(feature = "std_guard_impls", since = "1.20.0")]
2101impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2102    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2103        (**self).fmt(f)
2104    }
2105}
2106
2107/ The core primitive for interior mutability in Rust.
2108/
2109/ If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2110/ the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2111/ alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2112/ `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2113/ `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2114/
2115/ All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2116/ use `UnsafeCell` to wrap their data.
2117/
2118/ Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2119/ uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2120/ aliasing `&mut`, not even with `UnsafeCell<T>`.
2121/
2122/ `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2123/ threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2124/ [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2125/ [`core::sync::atomic`].
2126/
2127/ The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2128/ `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2129/ correctly.
2130/
2131/ [`.get()`]: `UnsafeCell::get`
2132/ [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2133/
2134/ # Aliasing rules
2135/
2136/ The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2137/
2138/ - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2139/   you must not access the data in any way that contradicts that reference for the remainder of
2140/   `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2141/   to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2142/   within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2143/   `&mut T` reference that is released to safe code, then you must not access the data within the
2144/   `UnsafeCell` until that reference expires.
2145/
2146/ - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2147/   until the reference expires. As a special exception, given an `&T`, any part of it that is
2148/   inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2149/   last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2150/   of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2151/   *every part of it* (including padding) is inside an `UnsafeCell`.
2152/
2153/ However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2154/ live memory and the compiler is allowed to insert spurious reads if it can prove that this
2155/ memory has not yet been deallocated.
2156/
2157/ To assist with proper design, the following scenarios are explicitly declared legal
2158/ for single-threaded code:
2159/
2160/ 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2161/    references, but not with a `&mut T`
2162/
2163/ 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2164/    co-exist with it. A `&mut T` must always be unique.
2165/
2166/ Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2167/ `&UnsafeCell<T>` references alias the cell) is
2168/ ok (provided you enforce the above invariants some other way), it is still undefined behavior
2169/ to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2170/ designed to have a special interaction with _shared_ accesses (_i.e._, through an
2171/ `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2172/ accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2173/ may be aliased for the duration of that `&mut` borrow.
2174/ This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2175/ a `&mut T`.
2176/
2177/ [`.get_mut()`]: `UnsafeCell::get_mut`
2178/
2179/ # Memory layout
2180/
2181/ `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2182/ of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2183/ Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2184/ to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2185/ optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2186/ 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2187/ Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2188/ having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2189/ order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2190/ thus this can cause distortions in the type size in these cases.
2191/
2192/ Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2193/ _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
2194/ can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2195/ on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2196/ same memory layout, the following is not allowed and undefined behavior:
2197/
2198/ ```rust,compile_fail
2199/ # use std::cell::UnsafeCell;
2200/ unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2201/   let t = ptr as *const UnsafeCell<T> as *mut T;
2202/   / This is undefined behavior, because the `*mut T` pointer
2203/   / was not obtained through `.get()` nor `.raw_get()`:
2204/   unsafe { &mut *t }
2205/ }
2206/ ```
2207/
2208/ Instead, do this:
2209/
2210/ ```rust
2211/ # use std::cell::UnsafeCell;
2212/ / Safety: the caller must ensure that there are no references that
2213/ / point to the *contents* of the `UnsafeCell`.
2214/ unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2215/   unsafe { &mut *ptr.get() }
2216/ }
2217/ ```
2218/
2219/ Converting in the other direction from a `&mut T`
2220/ to an `&UnsafeCell<T>` is allowed:
2221/
2222/ ```rust
2223/ # use std::cell::UnsafeCell;
2224/ fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2225/   let t = ptr as *mut T as *const UnsafeCell<T>;
2226/   / SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2227/   unsafe { &*t }
2228/ }
2229/ ```
2230/
2231/ [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2232/ [`.raw_get()`]: `UnsafeCell::raw_get`
2233/
2234/ # Examples
2235/
2236/ Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2237/ there being multiple references aliasing the cell:
2238/
2239/ ```
2240/ use std::cell::UnsafeCell;
2241/
2242/ let x: UnsafeCell<i32> = 42.into();
2243/ / Get multiple / concurrent / shared references to the same `x`.
2244/ let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2245/
2246/ unsafe {
2247/     / SAFETY: within this scope there are no other references to `x`'s contents,
2248/     / so ours is effectively unique.
2249/     let p1_exclusive: &mut i32 = &mut *p1.get(); / -- borrow --+
2250/     *p1_exclusive += 27; /                                     |
2251/ } / <---------- cannot go beyond this point -------------------+
2252/
2253/ unsafe {
2254/     / SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2255/     / so we can have multiple shared accesses concurrently.
2256/     let p2_shared: &i32 = &*p2.get();
2257/     assert_eq!(*p2_shared, 42 + 27);
2258/     let p1_shared: &i32 = &*p1.get();
2259/     assert_eq!(*p1_shared, *p2_shared);
2260/ }
2261/ ```
2262/
2263/ The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2264/ implies exclusive access to its `T`:
2265/
2266/ ```rust
2267/ #![forbid(unsafe_code)]
2268/ / with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2269/ / `unsafe` here.
2270/ use std::cell::UnsafeCell;
2271/
2272/ let mut x: UnsafeCell<i32> = 42.into();
2273/
2274/ / Get a compile-time-checked unique reference to `x`.
2275/ let p_unique: &mut UnsafeCell<i32> = &mut x;
2276/ / With an exclusive reference, we can mutate the contents for free.
2277/ *p_unique.get_mut() = 0;
2278/ / Or, equivalently:
2279/ x = UnsafeCell::new(0);
2280/
2281/ / When we own the value, we can extract the contents for free.
2282/ let contents: i32 = x.into_inner();
2283/ assert_eq!(contents, 0);
2284/ ```
2285#[lang = "unsafe_cell"]
2286#[stable(feature = "rust1", since = "1.0.0")]
2287#[repr(transparent)]
2288#[rustc_pub_transparent]
2289pub struct UnsafeCell<T: ?Sized> {
2290    value: T,
2291}
2292
2293#[stable(feature = "rust1", since = "1.0.0")]
2294impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2295
2296impl<T> UnsafeCell<T> {
2297    / Constructs a new instance of `UnsafeCell` which will wrap the specified
2298    / value.
2299    /
2300    / All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2301    /
2302    / # Examples
2303    /
2304    / ```
2305    / use std::cell::UnsafeCell;
2306    /
2307    / let uc = UnsafeCell::new(5);
2308    / ```
2309    #[stable(feature = "rust1", since = "1.0.0")]
2310    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2311    #[inline(always)]
2312    pub const fn new(value: T) -> UnsafeCell<T> {
2313        UnsafeCell { value }
2314    }
2315
2316    / Unwraps the value, consuming the cell.
2317    /
2318    / # Examples
2319    /
2320    / ```
2321    / use std::cell::UnsafeCell;
2322    /
2323    / let uc = UnsafeCell::new(5);
2324    /
2325    / let five = uc.into_inner();
2326    / ```
2327    #[inline(always)]
2328    #[stable(feature = "rust1", since = "1.0.0")]
2329    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2330    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2331    pub const fn into_inner(self) -> T {
2332        self.value
2333    }
2334
2335    / Replace the value in this `UnsafeCell` and return the old value.
2336    /
2337    / # Safety
2338    /
2339    / The caller must take care to avoid aliasing and data races.
2340    /
2341    / - It is Undefined Behavior to allow calls to race with
2342    /   any other access to the wrapped value.
2343    / - It is Undefined Behavior to call this while any other
2344    /   reference(s) to the wrapped value are alive.
2345    /
2346    / # Examples
2347    /
2348    / ```
2349    / #![feature(unsafe_cell_access)]
2350    / use std::cell::UnsafeCell;
2351    /
2352    / let uc = UnsafeCell::new(5);
2353    /
2354    / let old = unsafe { uc.replace(10) };
2355    / assert_eq!(old, 5);
2356    / ```
2357    #[inline]
2358    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2359    pub const unsafe fn replace(&self, value: T) -> T {
2360        / SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2361        unsafe { ptr::replace(self.get(), value) }
2362    }
2363}
2364
2365impl<T: ?Sized> UnsafeCell<T> {
2366    / Converts from `&mut T` to `&mut UnsafeCell<T>`.
2367    /
2368    / # Examples
2369    /
2370    / ```
2371    / use std::cell::UnsafeCell;
2372    /
2373    / let mut val = 42;
2374    / let uc = UnsafeCell::from_mut(&mut val);
2375    /
2376    / *uc.get_mut() -= 1;
2377    / assert_eq!(*uc.get_mut(), 41);
2378    / ```
2379    #[inline(always)]
2380    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2381    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2382    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2383        / SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2384        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2385    }
2386
2387    / Gets a mutable pointer to the wrapped value.
2388    /
2389    / This can be cast to a pointer of any kind. When creating references, you must uphold the
2390    / aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2391    / caveats.
2392    /
2393    / # Examples
2394    /
2395    / ```
2396    / use std::cell::UnsafeCell;
2397    /
2398    / let uc = UnsafeCell::new(5);
2399    /
2400    / let five = uc.get();
2401    / ```
2402    #[inline(always)]
2403    #[stable(feature = "rust1", since = "1.0.0")]
2404    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2405    #[rustc_as_ptr]
2406    #[rustc_never_returns_null_ptr]
2407    pub const fn get(&self) -> *mut T {
2408        / We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2409        / #[repr(transparent)]. This exploits std's special status, there is
2410        / no guarantee for user code that this will work in future versions of the compiler!
2411        self as *const UnsafeCell<T> as *const T as *mut T
2412    }
2413
2414    / Returns a mutable reference to the underlying data.
2415    /
2416    / This call borrows the `UnsafeCell` mutably (at compile-time) which
2417    / guarantees that we possess the only reference.
2418    /
2419    / # Examples
2420    /
2421    / ```
2422    / use std::cell::UnsafeCell;
2423    /
2424    / let mut c = UnsafeCell::new(5);
2425    / *c.get_mut() += 1;
2426    /
2427    / assert_eq!(*c.get_mut(), 6);
2428    / ```
2429    #[inline(always)]
2430    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2431    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2432    pub const fn get_mut(&mut self) -> &mut T {
2433        &mut self.value
2434    }
2435
2436    / Gets a mutable pointer to the wrapped value.
2437    / The difference from [`get`] is that this function accepts a raw pointer,
2438    / which is useful to avoid the creation of temporary references.
2439    /
2440    / This can be cast to a pointer of any kind. When creating references, you must uphold the
2441    / aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2442    / caveats.
2443    /
2444    / [`get`]: UnsafeCell::get()
2445    /
2446    / # Examples
2447    /
2448    / Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2449    / calling `get` would require creating a reference to uninitialized data:
2450    /
2451    / ```
2452    / use std::cell::UnsafeCell;
2453    / use std::mem::MaybeUninit;
2454    /
2455    / let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2456    / unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2457    / / avoid below which references to uninitialized data
2458    / / unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2459    / let uc = unsafe { m.assume_init() };
2460    /
2461    / assert_eq!(uc.into_inner(), 5);
2462    / ```
2463    #[inline(always)]
2464    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2465    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2466    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2467    pub const fn raw_get(this: *const Self) -> *mut T {
2468        / We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2469        / #[repr(transparent)]. This exploits std's special status, there is
2470        / no guarantee for user code that this will work in future versions of the compiler!
2471        this as *const T as *mut T
2472    }
2473
2474    / Get a shared reference to the value within the `UnsafeCell`.
2475    /
2476    / # Safety
2477    /
2478    / - It is Undefined Behavior to call this while any mutable
2479    /   reference to the wrapped value is alive.
2480    / - Mutating the wrapped value while the returned
2481    /   reference is alive is Undefined Behavior.
2482    /
2483    / # Examples
2484    /
2485    / ```
2486    / #![feature(unsafe_cell_access)]
2487    / use std::cell::UnsafeCell;
2488    /
2489    / let uc = UnsafeCell::new(5);
2490    /
2491    / let val = unsafe { uc.as_ref_unchecked() };
2492    / assert_eq!(val, &5);
2493    / ```
2494    #[inline]
2495    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2496    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2497        / SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2498        unsafe { self.get().as_ref_unchecked() }
2499    }
2500
2501    / Get an exclusive reference to the value within the `UnsafeCell`.
2502    /
2503    / # Safety
2504    /
2505    / - It is Undefined Behavior to call this while any other
2506    /   reference(s) to the wrapped value are alive.
2507    / - Mutating the wrapped value through other means while the
2508    /   returned reference is alive is Undefined Behavior.
2509    /
2510    / # Examples
2511    /
2512    / ```
2513    / #![feature(unsafe_cell_access)]
2514    / use std::cell::UnsafeCell;
2515    /
2516    / let uc = UnsafeCell::new(5);
2517    /
2518    / unsafe { *uc.as_mut_unchecked() += 1; }
2519    / assert_eq!(uc.into_inner(), 6);
2520    / ```
2521    #[inline]
2522    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2523    #[allow(clippy::mut_from_ref)]
2524    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2525        / SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2526        unsafe { self.get().as_mut_unchecked() }
2527    }
2528}
2529
2530#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2531#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2532impl<T: [const] Default> const Default for UnsafeCell<T> {
2533    / Creates an `UnsafeCell`, with the `Default` value for T.
2534    fn default() -> UnsafeCell<T> {
2535        UnsafeCell::new(Default::default())
2536    }
2537}
2538
2539#[stable(feature = "cell_from", since = "1.12.0")]
2540#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2541impl<T> const From<T> for UnsafeCell<T> {
2542    / Creates a new `UnsafeCell<T>` containing the given value.
2543    fn from(t: T) -> UnsafeCell<T> {
2544        UnsafeCell::new(t)
2545    }
2546}
2547
2548#[unstable(feature = "coerce_unsized", issue = "18598")]
2549impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2550
2551/ Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2552/ and become dyn-compatible method receivers.
2553/ Note that currently `UnsafeCell` itself cannot be a method receiver
2554/ because it does not implement Deref.
2555/ In other words:
2556/ `self: UnsafeCell<&Self>` won't work
2557/ `self: UnsafeCellWrapper<Self>` becomes possible
2558#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2559impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2560
2561/ [`UnsafeCell`], but [`Sync`].
2562/
2563/ This is just an `UnsafeCell`, except it implements `Sync`
2564/ if `T` implements `Sync`.
2565/
2566/ `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2567/ You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2568/ shared between threads, if that's intentional.
2569/ Providing proper synchronization is still the task of the user,
2570/ making this type just as unsafe to use.
2571/
2572/ See [`UnsafeCell`] for details.
2573#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2574#[repr(transparent)]
2575#[rustc_diagnostic_item = "SyncUnsafeCell"]
2576#[rustc_pub_transparent]
2577pub struct SyncUnsafeCell<T: ?Sized> {
2578    value: UnsafeCell<T>,
2579}
2580
2581#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2582unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2583
2584#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2585impl<T> SyncUnsafeCell<T> {
2586    / Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2587    #[inline]
2588    pub const fn new(value: T) -> Self {
2589        Self { value: UnsafeCell { value } }
2590    }
2591
2592    / Unwraps the value, consuming the cell.
2593    #[inline]
2594    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2595    pub const fn into_inner(self) -> T {
2596        self.value.into_inner()
2597    }
2598}
2599
2600#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2601impl<T: ?Sized> SyncUnsafeCell<T> {
2602    / Gets a mutable pointer to the wrapped value.
2603    /
2604    / This can be cast to a pointer of any kind.
2605    / Ensure that the access is unique (no active references, mutable or not)
2606    / when casting to `&mut T`, and ensure that there are no mutations
2607    / or mutable aliases going on when casting to `&T`
2608    #[inline]
2609    #[rustc_as_ptr]
2610    #[rustc_never_returns_null_ptr]
2611    pub const fn get(&self) -> *mut T {
2612        self.value.get()
2613    }
2614
2615    / Returns a mutable reference to the underlying data.
2616    /
2617    / This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2618    / guarantees that we possess the only reference.
2619    #[inline]
2620    pub const fn get_mut(&mut self) -> &mut T {
2621        self.value.get_mut()
2622    }
2623
2624    / Gets a mutable pointer to the wrapped value.
2625    /
2626    / See [`UnsafeCell::get`] for details.
2627    #[inline]
2628    pub const fn raw_get(this: *const Self) -> *mut T {
2629        / We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2630        / of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2631        / See UnsafeCell::raw_get.
2632        this as *const T as *mut T
2633    }
2634}
2635
2636#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2637#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2638impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2639    / Creates an `SyncUnsafeCell`, with the `Default` value for T.
2640    fn default() -> SyncUnsafeCell<T> {
2641        SyncUnsafeCell::new(Default::default())
2642    }
2643}
2644
2645#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2646#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2647impl<T> const From<T> for SyncUnsafeCell<T> {
2648    / Creates a new `SyncUnsafeCell<T>` containing the given value.
2649    fn from(t: T) -> SyncUnsafeCell<T> {
2650        SyncUnsafeCell::new(t)
2651    }
2652}
2653
2654#[unstable(feature = "coerce_unsized", issue = "18598")]
2655/#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2656impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2657
2658/ Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2659/ and become dyn-compatible method receivers.
2660/ Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2661/ because it does not implement Deref.
2662/ In other words:
2663/ `self: SyncUnsafeCell<&Self>` won't work
2664/ `self: SyncUnsafeCellWrapper<Self>` becomes possible
2665#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2666/#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2667impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2668
2669#[allow(unused)]
2670fn assert_coerce_unsized(
2671    a: UnsafeCell<&i32>,
2672    b: SyncUnsafeCell<&i32>,
2673    c: Cell<&i32>,
2674    d: RefCell<&i32>,
2675) {
2676    let _: UnsafeCell<&dyn Send> = a;
2677    let _: SyncUnsafeCell<&dyn Send> = b;
2678    let _: Cell<&dyn Send> = c;
2679    let _: RefCell<&dyn Send> = d;
2680}
2681
2682#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2683unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2684
2685#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2686unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2687
2688#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2689unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2690
2691#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2692unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2693
2694#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2695unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2696
2697#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2698unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}

Follow Lee on X/Twitter - Father, Husband, Serial builder creating AI, crypto, games & web tools. We are friends :) AI Will Come To Life!

Check out: eBank.nz (Art Generator) | Netwrck.com (AI Tools) | Text-Generator.io (AI API) | BitBank.nz (Crypto AI) | ReadingTime (Kids Reading) | RewordGame | BigMultiplayerChess | WebFiddle | How.nz | Helix AI Assistant