core/cell.rs
1/! Shareable mutable containers.
2/!
3/! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4/! have one of the following:
5/!
6/! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7/! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8/!
9/! This is enforced by the Rust compiler. However, there are situations where this rule is not
10/! flexible enough. Sometimes it is required to have multiple references to an object and yet
11/! mutate it.
12/!
13/! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14/! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15/! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16/! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17/! types are the correct data structures to do so).
18/!
19/! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20/! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21/! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22/! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23/! (mutable only via `&mut T`).
24/!
25/! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26/! Each provides a different way of providing safe interior mutability.
27/!
28/! ## `Cell<T>`
29/!
30/! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31/! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32/! obtained without replacing it with something else. Both of these rules ensure that there is
33/! never more than one reference pointing to the inner value. This type provides the following
34/! methods:
35/!
36/! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37/! interior value by duplicating it.
38/! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39/! interior value with [`Default::default()`] and returns the replaced value.
40/! - All types have:
41/! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42/! value.
43/! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44/! interior value.
45/! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46/!
47/! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48/! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49/! possible. For larger and non-copy types, `RefCell` provides some advantages.
50/!
51/! ## `RefCell<T>`
52/!
53/! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54/! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55/! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56/! statically, at compile time.
57/!
58/! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59/! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60/! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61/! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62/! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63/! these rules, the thread will panic.
64/!
65/! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66/!
67/! ## `OnceCell<T>`
68/!
69/! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70/! typically only need to be set once. This means that a reference `&T` can be obtained without
71/! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72/! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73/! reference to the `OnceCell`.
74/!
75/! `OnceCell` provides the following methods:
76/!
77/! - [`get`](OnceCell::get): obtain a reference to the inner value
78/! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79/! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80/! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81/! if you have a mutable reference to the cell itself.
82/!
83/! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84/!
85/! ## `LazyCell<T, F>`
86/!
87/! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88/! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89/! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90/! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91/! so its use is much more transparent with a place which has been initialized by a constant.
92/!
93/! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94/!
95/! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96/! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97/!
98/! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99/!
100/! # When to choose interior mutability
101/!
102/! The more common inherited mutability, where one must have unique access to mutate a value, is
103/! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104/! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105/! interior mutability is something of a last resort. Since cell types enable mutation where it
106/! would otherwise be disallowed though, there are occasions when interior mutability might be
107/! appropriate, or even *must* be used, e.g.
108/!
109/! * Introducing mutability 'inside' of something immutable
110/! * Implementation details of logically-immutable methods.
111/! * Mutating implementations of [`Clone`].
112/!
113/! ## Introducing mutability 'inside' of something immutable
114/!
115/! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116/! be cloned and shared between multiple parties. Because the contained values may be
117/! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118/! impossible to mutate data inside of these smart pointers at all.
119/!
120/! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121/! mutability:
122/!
123/! ```
124/! use std::cell::{RefCell, RefMut};
125/! use std::collections::HashMap;
126/! use std::rc::Rc;
127/!
128/! fn main() {
129/! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130/! / Create a new block to limit the scope of the dynamic borrow
131/! {
132/! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133/! map.insert("africa", 92388);
134/! map.insert("kyoto", 11837);
135/! map.insert("piccadilly", 11826);
136/! map.insert("marbles", 38);
137/! }
138/!
139/! / Note that if we had not let the previous borrow of the cache fall out
140/! / of scope then the subsequent borrow would cause a dynamic thread panic.
141/! / This is the major hazard of using `RefCell`.
142/! let total: i32 = shared_map.borrow().values().sum();
143/! println!("{total}");
144/! }
145/! ```
146/!
147/! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148/! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149/! multi-threaded situation.
150/!
151/! ## Implementation details of logically-immutable methods
152/!
153/! Occasionally it may be desirable not to expose in an API that there is mutation happening
154/! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155/! forces the implementation to perform mutation; or because you must employ mutation to implement
156/! a trait method that was originally defined to take `&self`.
157/!
158/! ```
159/! # #![allow(dead_code)]
160/! use std::cell::OnceCell;
161/!
162/! struct Graph {
163/! edges: Vec<(i32, i32)>,
164/! span_tree_cache: OnceCell<Vec<(i32, i32)>>
165/! }
166/!
167/! impl Graph {
168/! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169/! self.span_tree_cache
170/! .get_or_init(|| self.calc_span_tree())
171/! .clone()
172/! }
173/!
174/! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175/! / Expensive computation goes here
176/! vec![]
177/! }
178/! }
179/! ```
180/!
181/! ## Mutating implementations of `Clone`
182/!
183/! This is simply a special - but common - case of the previous: hiding mutability for operations
184/! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185/! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186/! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187/! reference counts within a `Cell<T>`.
188/!
189/! ```
190/! use std::cell::Cell;
191/! use std::ptr::NonNull;
192/! use std::process::abort;
193/! use std::marker::PhantomData;
194/!
195/! struct Rc<T: ?Sized> {
196/! ptr: NonNull<RcInner<T>>,
197/! phantom: PhantomData<RcInner<T>>,
198/! }
199/!
200/! struct RcInner<T: ?Sized> {
201/! strong: Cell<usize>,
202/! refcount: Cell<usize>,
203/! value: T,
204/! }
205/!
206/! impl<T: ?Sized> Clone for Rc<T> {
207/! fn clone(&self) -> Rc<T> {
208/! self.inc_strong();
209/! Rc {
210/! ptr: self.ptr,
211/! phantom: PhantomData,
212/! }
213/! }
214/! }
215/!
216/! trait RcInnerPtr<T: ?Sized> {
217/!
218/! fn inner(&self) -> &RcInner<T>;
219/!
220/! fn strong(&self) -> usize {
221/! self.inner().strong.get()
222/! }
223/!
224/! fn inc_strong(&self) {
225/! self.inner()
226/! .strong
227/! .set(self.strong()
228/! .checked_add(1)
229/! .unwrap_or_else(|| abort() ));
230/! }
231/! }
232/!
233/! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234/! fn inner(&self) -> &RcInner<T> {
235/! unsafe {
236/! self.ptr.as_ref()
237/! }
238/! }
239/! }
240/! ```
241/!
242/! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243/! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244/! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245/! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246/! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247/! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248/! [`Sync`]: ../../std/marker/trait.Sync.html
249/! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{Destruct, PhantomData, Unsize};
256use crate::mem::{self, ManuallyDrop};
257use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::panic::const_panic;
259use crate::pin::PinCoerceUnsized;
260use crate::ptr::{self, NonNull};
261use crate::range;
262
263mod lazy;
264mod once;
265
266#[stable(feature = "lazy_cell", since = "1.80.0")]
267pub use lazy::LazyCell;
268#[stable(feature = "once_cell", since = "1.70.0")]
269pub use once::OnceCell;
270
271/ A mutable memory location.
272/
273/ # Memory layout
274/
275/ `Cell<T>` has the same [memory layout and caveats as
276/ `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
277/ `Cell<T>` has the same in-memory representation as its inner type `T`.
278/
279/ # Examples
280/
281/ In this example, you can see that `Cell<T>` enables mutation inside an
282/ immutable struct. In other words, it enables "interior mutability".
283/
284/ ```
285/ use std::cell::Cell;
286/
287/ struct SomeStruct {
288/ regular_field: u8,
289/ special_field: Cell<u8>,
290/ }
291/
292/ let my_struct = SomeStruct {
293/ regular_field: 0,
294/ special_field: Cell::new(1),
295/ };
296/
297/ let new_value = 100;
298/
299/ / ERROR: `my_struct` is immutable
300/ / my_struct.regular_field = new_value;
301/
302/ / WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
303/ / which can always be mutated
304/ my_struct.special_field.set(new_value);
305/ assert_eq!(my_struct.special_field.get(), new_value);
306/ ```
307/
308/ See the [module-level documentation](self) for more.
309#[rustc_diagnostic_item = "Cell"]
310#[stable(feature = "rust1", since = "1.0.0")]
311#[repr(transparent)]
312#[rustc_pub_transparent]
313pub struct Cell<T: ?Sized> {
314 value: UnsafeCell<T>,
315}
316
317#[stable(feature = "rust1", since = "1.0.0")]
318unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
319
320/ Note that this negative impl isn't strictly necessary for correctness,
321/ as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
322/ However, given how important `Cell`'s `!Sync`-ness is,
323/ having an explicit negative impl is nice for documentation purposes
324/ and results in nicer error messages.
325#[stable(feature = "rust1", since = "1.0.0")]
326impl<T: ?Sized> !Sync for Cell<T> {}
327
328#[stable(feature = "rust1", since = "1.0.0")]
329impl<T: Copy> Clone for Cell<T> {
330 #[inline]
331 fn clone(&self) -> Cell<T> {
332 Cell::new(self.get())
333 }
334}
335
336#[stable(feature = "rust1", since = "1.0.0")]
337#[rustc_const_unstable(feature = "const_default", issue = "143894")]
338impl<T: [const] Default> const Default for Cell<T> {
339 / Creates a `Cell<T>`, with the `Default` value for T.
340 #[inline]
341 fn default() -> Cell<T> {
342 Cell::new(Default::default())
343 }
344}
345
346#[stable(feature = "rust1", since = "1.0.0")]
347impl<T: PartialEq + Copy> PartialEq for Cell<T> {
348 #[inline]
349 fn eq(&self, other: &Cell<T>) -> bool {
350 self.get() == other.get()
351 }
352}
353
354#[stable(feature = "cell_eq", since = "1.2.0")]
355impl<T: Eq + Copy> Eq for Cell<T> {}
356
357#[stable(feature = "cell_ord", since = "1.10.0")]
358impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
359 #[inline]
360 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
361 self.get().partial_cmp(&other.get())
362 }
363
364 #[inline]
365 fn lt(&self, other: &Cell<T>) -> bool {
366 self.get() < other.get()
367 }
368
369 #[inline]
370 fn le(&self, other: &Cell<T>) -> bool {
371 self.get() <= other.get()
372 }
373
374 #[inline]
375 fn gt(&self, other: &Cell<T>) -> bool {
376 self.get() > other.get()
377 }
378
379 #[inline]
380 fn ge(&self, other: &Cell<T>) -> bool {
381 self.get() >= other.get()
382 }
383}
384
385#[stable(feature = "cell_ord", since = "1.10.0")]
386impl<T: Ord + Copy> Ord for Cell<T> {
387 #[inline]
388 fn cmp(&self, other: &Cell<T>) -> Ordering {
389 self.get().cmp(&other.get())
390 }
391}
392
393#[stable(feature = "cell_from", since = "1.12.0")]
394#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
395impl<T> const From<T> for Cell<T> {
396 / Creates a new `Cell<T>` containing the given value.
397 fn from(t: T) -> Cell<T> {
398 Cell::new(t)
399 }
400}
401
402impl<T> Cell<T> {
403 / Creates a new `Cell` containing the given value.
404 /
405 / # Examples
406 /
407 / ```
408 / use std::cell::Cell;
409 /
410 / let c = Cell::new(5);
411 / ```
412 #[stable(feature = "rust1", since = "1.0.0")]
413 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
414 #[inline]
415 pub const fn new(value: T) -> Cell<T> {
416 Cell { value: UnsafeCell::new(value) }
417 }
418
419 / Sets the contained value.
420 /
421 / # Examples
422 /
423 / ```
424 / use std::cell::Cell;
425 /
426 / let c = Cell::new(5);
427 /
428 / c.set(10);
429 / ```
430 #[inline]
431 #[stable(feature = "rust1", since = "1.0.0")]
432 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
433 pub const fn set(&self, val: T)
434 where
435 T: [const] Destruct,
436 {
437 self.replace(val);
438 }
439
440 / Swaps the values of two `Cell`s.
441 /
442 / The difference with `std::mem::swap` is that this function doesn't
443 / require a `&mut` reference.
444 /
445 / # Panics
446 /
447 / This function will panic if `self` and `other` are different `Cell`s that partially overlap.
448 / (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
449 / However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
450 /
451 / # Examples
452 /
453 / ```
454 / use std::cell::Cell;
455 /
456 / let c1 = Cell::new(5i32);
457 / let c2 = Cell::new(10i32);
458 / c1.swap(&c2);
459 / assert_eq!(10, c1.get());
460 / assert_eq!(5, c2.get());
461 / ```
462 #[inline]
463 #[stable(feature = "move_cell", since = "1.17.0")]
464 pub fn swap(&self, other: &Self) {
465 / This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
466 / do the check in const, so trying to use it here would be inviting unnecessary fragility.
467 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
468 let src_usize = src.addr();
469 let dst_usize = dst.addr();
470 let diff = src_usize.abs_diff(dst_usize);
471 diff >= size_of::<T>()
472 }
473
474 if ptr::eq(self, other) {
475 / Swapping wouldn't change anything.
476 return;
477 }
478 if !is_nonoverlapping(self, other) {
479 / See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
480 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
481 }
482 / SAFETY: This can be risky if called from separate threads, but `Cell`
483 / is `!Sync` so this won't happen. This also won't invalidate any
484 / pointers since `Cell` makes sure nothing else will be pointing into
485 / either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
486 / so `swap` will just properly copy two full values of type `T` back and forth.
487 unsafe {
488 mem::swap(&mut *self.value.get(), &mut *other.value.get());
489 }
490 }
491
492 / Replaces the contained value with `val`, and returns the old contained value.
493 /
494 / # Examples
495 /
496 / ```
497 / use std::cell::Cell;
498 /
499 / let cell = Cell::new(5);
500 / assert_eq!(cell.get(), 5);
501 / assert_eq!(cell.replace(10), 5);
502 / assert_eq!(cell.get(), 10);
503 / ```
504 #[inline]
505 #[stable(feature = "move_cell", since = "1.17.0")]
506 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
507 #[rustc_confusables("swap")]
508 pub const fn replace(&self, val: T) -> T {
509 / SAFETY: This can cause data races if called from a separate thread,
510 / but `Cell` is `!Sync` so this won't happen.
511 mem::replace(unsafe { &mut *self.value.get() }, val)
512 }
513
514 / Unwraps the value, consuming the cell.
515 /
516 / # Examples
517 /
518 / ```
519 / use std::cell::Cell;
520 /
521 / let c = Cell::new(5);
522 / let five = c.into_inner();
523 /
524 / assert_eq!(five, 5);
525 / ```
526 #[stable(feature = "move_cell", since = "1.17.0")]
527 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
528 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
529 pub const fn into_inner(self) -> T {
530 self.value.into_inner()
531 }
532}
533
534impl<T: Copy> Cell<T> {
535 / Returns a copy of the contained value.
536 /
537 / # Examples
538 /
539 / ```
540 / use std::cell::Cell;
541 /
542 / let c = Cell::new(5);
543 /
544 / let five = c.get();
545 / ```
546 #[inline]
547 #[stable(feature = "rust1", since = "1.0.0")]
548 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
549 pub const fn get(&self) -> T {
550 / SAFETY: This can cause data races if called from a separate thread,
551 / but `Cell` is `!Sync` so this won't happen.
552 unsafe { *self.value.get() }
553 }
554
555 / Updates the contained value using a function.
556 /
557 / # Examples
558 /
559 / ```
560 / use std::cell::Cell;
561 /
562 / let c = Cell::new(5);
563 / c.update(|x| x + 1);
564 / assert_eq!(c.get(), 6);
565 / ```
566 #[inline]
567 #[stable(feature = "cell_update", since = "1.88.0")]
568 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
569 pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
570 where
571 / FIXME(const-hack): `Copy` should imply `const Destruct`
572 T: [const] Destruct,
573 {
574 let old = self.get();
575 self.set(f(old));
576 }
577}
578
579impl<T: ?Sized> Cell<T> {
580 / Returns a raw pointer to the underlying data in this cell.
581 /
582 / # Examples
583 /
584 / ```
585 / use std::cell::Cell;
586 /
587 / let c = Cell::new(5);
588 /
589 / let ptr = c.as_ptr();
590 / ```
591 #[inline]
592 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
593 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
594 #[rustc_as_ptr]
595 #[rustc_never_returns_null_ptr]
596 pub const fn as_ptr(&self) -> *mut T {
597 self.value.get()
598 }
599
600 / Returns a mutable reference to the underlying data.
601 /
602 / This call borrows `Cell` mutably (at compile-time) which guarantees
603 / that we possess the only reference.
604 /
605 / However be cautious: this method expects `self` to be mutable, which is
606 / generally not the case when using a `Cell`. If you require interior
607 / mutability by reference, consider using `RefCell` which provides
608 / run-time checked mutable borrows through its [`borrow_mut`] method.
609 /
610 / [`borrow_mut`]: RefCell::borrow_mut()
611 /
612 / # Examples
613 /
614 / ```
615 / use std::cell::Cell;
616 /
617 / let mut c = Cell::new(5);
618 / *c.get_mut() += 1;
619 /
620 / assert_eq!(c.get(), 6);
621 / ```
622 #[inline]
623 #[stable(feature = "cell_get_mut", since = "1.11.0")]
624 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
625 pub const fn get_mut(&mut self) -> &mut T {
626 self.value.get_mut()
627 }
628
629 / Returns a `&Cell<T>` from a `&mut T`
630 /
631 / # Examples
632 /
633 / ```
634 / use std::cell::Cell;
635 /
636 / let slice: &mut [i32] = &mut [1, 2, 3];
637 / let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
638 / let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
639 /
640 / assert_eq!(slice_cell.len(), 3);
641 / ```
642 #[inline]
643 #[stable(feature = "as_cell", since = "1.37.0")]
644 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
645 pub const fn from_mut(t: &mut T) -> &Cell<T> {
646 / SAFETY: `&mut` ensures unique access.
647 unsafe { &*(t as *mut T as *const Cell<T>) }
648 }
649}
650
651impl<T: Default> Cell<T> {
652 / Takes the value of the cell, leaving `Default::default()` in its place.
653 /
654 / # Examples
655 /
656 / ```
657 / use std::cell::Cell;
658 /
659 / let c = Cell::new(5);
660 / let five = c.take();
661 /
662 / assert_eq!(five, 5);
663 / assert_eq!(c.into_inner(), 0);
664 / ```
665 #[stable(feature = "move_cell", since = "1.17.0")]
666 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
667 pub const fn take(&self) -> T
668 where
669 T: [const] Default,
670 {
671 self.replace(Default::default())
672 }
673}
674
675#[unstable(feature = "coerce_unsized", issue = "18598")]
676impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
677
678/ Allow types that wrap `Cell` to also implement `DispatchFromDyn`
679/ and become dyn-compatible method receivers.
680/ Note that currently `Cell` itself cannot be a method receiver
681/ because it does not implement Deref.
682/ In other words:
683/ `self: Cell<&Self>` won't work
684/ `self: CellWrapper<Self>` becomes possible
685#[unstable(feature = "dispatch_from_dyn", issue = "none")]
686impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
687
688impl<T> Cell<[T]> {
689 / Returns a `&[Cell<T>]` from a `&Cell<[T]>`
690 /
691 / # Examples
692 /
693 / ```
694 / use std::cell::Cell;
695 /
696 / let slice: &mut [i32] = &mut [1, 2, 3];
697 / let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
698 / let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
699 /
700 / assert_eq!(slice_cell.len(), 3);
701 / ```
702 #[stable(feature = "as_cell", since = "1.37.0")]
703 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
704 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
705 / SAFETY: `Cell<T>` has the same memory layout as `T`.
706 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
707 }
708}
709
710impl<T, const N: usize> Cell<[T; N]> {
711 / Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
712 /
713 / # Examples
714 /
715 / ```
716 / use std::cell::Cell;
717 /
718 / let mut array: [i32; 3] = [1, 2, 3];
719 / let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
720 / let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
721 / ```
722 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
723 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
724 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
725 / SAFETY: `Cell<T>` has the same memory layout as `T`.
726 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
727 }
728}
729
730/ Types for which cloning `Cell<Self>` is sound.
731/
732/ # Safety
733/
734/ Implementing this trait for a type is sound if and only if the following code is sound for T =
735/ that type.
736/
737/ ```
738/ #![feature(cell_get_cloned)]
739/ # use std::cell::{CloneFromCell, Cell};
740/ fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
741/ unsafe { T::clone(&*cell.as_ptr()) }
742/ }
743/ ```
744/
745/ Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
746/ following is unsound:
747/
748/ ```rust
749/ #![feature(cell_get_cloned)]
750/ # use std::cell::Cell;
751/
752/ #[derive(Copy, Debug)]
753/ pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
754/
755/ impl Clone for Bad<'_> {
756/ fn clone(&self) -> Self {
757/ let a: &u8 = &self.1;
758/ / when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
759/ / it -- this is UB
760/ self.0.unwrap().set(Self(None, 1));
761/ dbg!((a, self));
762/ Self(None, 0)
763/ }
764/ }
765/
766/ / this is not sound
767/ / unsafe impl CloneFromCell for Bad<'_> {}
768/ ```
769#[unstable(feature = "cell_get_cloned", issue = "145329")]
770/ Allow potential overlapping implementations in user code
771#[marker]
772pub unsafe trait CloneFromCell: Clone {}
773
774/ `CloneFromCell` can be implemented for types that don't have indirection and which don't access
775/ `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
776#[unstable(feature = "cell_get_cloned", issue = "145329")]
777unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
778#[unstable(feature = "cell_get_cloned", issue = "145329")]
779unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
780#[unstable(feature = "cell_get_cloned", issue = "145329")]
781unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
782#[unstable(feature = "cell_get_cloned", issue = "145329")]
783unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
784#[unstable(feature = "cell_get_cloned", issue = "145329")]
785unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
786#[unstable(feature = "cell_get_cloned", issue = "145329")]
787unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
788#[unstable(feature = "cell_get_cloned", issue = "145329")]
789unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
790
791#[unstable(feature = "cell_get_cloned", issue = "145329")]
792impl<T: CloneFromCell> Cell<T> {
793 / Get a clone of the `Cell` that contains a copy of the original value.
794 /
795 / This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
796 / cheaper `clone()` method.
797 /
798 / # Examples
799 /
800 / ```
801 / #![feature(cell_get_cloned)]
802 /
803 / use core::cell::Cell;
804 / use std::rc::Rc;
805 /
806 / let rc = Rc::new(1usize);
807 / let c1 = Cell::new(rc);
808 / let c2 = c1.get_cloned();
809 / assert_eq!(*c2.into_inner(), 1);
810 / ```
811 pub fn get_cloned(&self) -> Self {
812 / SAFETY: T is CloneFromCell, which guarantees that this is sound.
813 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
814 }
815}
816
817/ A mutable memory location with dynamically checked borrow rules
818/
819/ See the [module-level documentation](self) for more.
820#[rustc_diagnostic_item = "RefCell"]
821#[stable(feature = "rust1", since = "1.0.0")]
822pub struct RefCell<T: ?Sized> {
823 borrow: Cell<BorrowCounter>,
824 / Stores the location of the earliest currently active borrow.
825 / This gets updated whenever we go from having zero borrows
826 / to having a single borrow. When a borrow occurs, this gets included
827 / in the generated `BorrowError`/`BorrowMutError`
828 #[cfg(feature = "debug_refcell")]
829 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
830 value: UnsafeCell<T>,
831}
832
833/ An error returned by [`RefCell::try_borrow`].
834#[stable(feature = "try_borrow", since = "1.13.0")]
835#[non_exhaustive]
836#[derive(Debug)]
837pub struct BorrowError {
838 #[cfg(feature = "debug_refcell")]
839 location: &'static crate::panic::Location<'static>,
840}
841
842#[stable(feature = "try_borrow", since = "1.13.0")]
843impl Display for BorrowError {
844 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
845 #[cfg(feature = "debug_refcell")]
846 let res = write!(
847 f,
848 "RefCell already mutably borrowed; a previous borrow was at {}",
849 self.location
850 );
851
852 #[cfg(not(feature = "debug_refcell"))]
853 let res = Display::fmt("RefCell already mutably borrowed", f);
854
855 res
856 }
857}
858
859/ An error returned by [`RefCell::try_borrow_mut`].
860#[stable(feature = "try_borrow", since = "1.13.0")]
861#[non_exhaustive]
862#[derive(Debug)]
863pub struct BorrowMutError {
864 #[cfg(feature = "debug_refcell")]
865 location: &'static crate::panic::Location<'static>,
866}
867
868#[stable(feature = "try_borrow", since = "1.13.0")]
869impl Display for BorrowMutError {
870 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
871 #[cfg(feature = "debug_refcell")]
872 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
873
874 #[cfg(not(feature = "debug_refcell"))]
875 let res = Display::fmt("RefCell already borrowed", f);
876
877 res
878 }
879}
880
881/ This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
882#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
883#[track_caller]
884#[cold]
885const fn panic_already_borrowed(err: BorrowMutError) -> ! {
886 const_panic!(
887 "RefCell already borrowed",
888 "{err}",
889 err: BorrowMutError = err,
890 )
891}
892
893/ This ensures the panicking code is outlined from `borrow` for `RefCell`.
894#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
895#[track_caller]
896#[cold]
897const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
898 const_panic!(
899 "RefCell already mutably borrowed",
900 "{err}",
901 err: BorrowError = err,
902 )
903}
904
905/ Positive values represent the number of `Ref` active. Negative values
906/ represent the number of `RefMut` active. Multiple `RefMut`s can only be
907/ active at a time if they refer to distinct, nonoverlapping components of a
908/ `RefCell` (e.g., different ranges of a slice).
909/
910/ `Ref` and `RefMut` are both two words in size, and so there will likely never
911/ be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
912/ range. Thus, a `BorrowCounter` will probably never overflow or underflow.
913/ However, this is not a guarantee, as a pathological program could repeatedly
914/ create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
915/ explicitly check for overflow and underflow in order to avoid unsafety, or at
916/ least behave correctly in the event that overflow or underflow happens (e.g.,
917/ see BorrowRef::new).
918type BorrowCounter = isize;
919const UNUSED: BorrowCounter = 0;
920
921#[inline(always)]
922const fn is_writing(x: BorrowCounter) -> bool {
923 x < UNUSED
924}
925
926#[inline(always)]
927const fn is_reading(x: BorrowCounter) -> bool {
928 x > UNUSED
929}
930
931impl<T> RefCell<T> {
932 / Creates a new `RefCell` containing `value`.
933 /
934 / # Examples
935 /
936 / ```
937 / use std::cell::RefCell;
938 /
939 / let c = RefCell::new(5);
940 / ```
941 #[stable(feature = "rust1", since = "1.0.0")]
942 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
943 #[inline]
944 pub const fn new(value: T) -> RefCell<T> {
945 RefCell {
946 value: UnsafeCell::new(value),
947 borrow: Cell::new(UNUSED),
948 #[cfg(feature = "debug_refcell")]
949 borrowed_at: Cell::new(None),
950 }
951 }
952
953 / Consumes the `RefCell`, returning the wrapped value.
954 /
955 / # Examples
956 /
957 / ```
958 / use std::cell::RefCell;
959 /
960 / let c = RefCell::new(5);
961 /
962 / let five = c.into_inner();
963 / ```
964 #[stable(feature = "rust1", since = "1.0.0")]
965 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
966 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
967 #[inline]
968 pub const fn into_inner(self) -> T {
969 / Since this function takes `self` (the `RefCell`) by value, the
970 / compiler statically verifies that it is not currently borrowed.
971 self.value.into_inner()
972 }
973
974 / Replaces the wrapped value with a new one, returning the old value,
975 / without deinitializing either one.
976 /
977 / This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
978 /
979 / # Panics
980 /
981 / Panics if the value is currently borrowed.
982 /
983 / # Examples
984 /
985 / ```
986 / use std::cell::RefCell;
987 / let cell = RefCell::new(5);
988 / let old_value = cell.replace(6);
989 / assert_eq!(old_value, 5);
990 / assert_eq!(cell, RefCell::new(6));
991 / ```
992 #[inline]
993 #[stable(feature = "refcell_replace", since = "1.24.0")]
994 #[track_caller]
995 #[rustc_confusables("swap")]
996 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
997 pub const fn replace(&self, t: T) -> T {
998 mem::replace(&mut self.borrow_mut(), t)
999 }
1000
1001 / Replaces the wrapped value with a new one computed from `f`, returning
1002 / the old value, without deinitializing either one.
1003 /
1004 / # Panics
1005 /
1006 / Panics if the value is currently borrowed.
1007 /
1008 / # Examples
1009 /
1010 / ```
1011 / use std::cell::RefCell;
1012 / let cell = RefCell::new(5);
1013 / let old_value = cell.replace_with(|&mut old| old + 1);
1014 / assert_eq!(old_value, 5);
1015 / assert_eq!(cell, RefCell::new(6));
1016 / ```
1017 #[inline]
1018 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1019 #[track_caller]
1020 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1021 let mut_borrow = &mut *self.borrow_mut();
1022 let replacement = f(mut_borrow);
1023 mem::replace(mut_borrow, replacement)
1024 }
1025
1026 / Swaps the wrapped value of `self` with the wrapped value of `other`,
1027 / without deinitializing either one.
1028 /
1029 / This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1030 /
1031 / # Panics
1032 /
1033 / Panics if the value in either `RefCell` is currently borrowed, or
1034 / if `self` and `other` point to the same `RefCell`.
1035 /
1036 / # Examples
1037 /
1038 / ```
1039 / use std::cell::RefCell;
1040 / let c = RefCell::new(5);
1041 / let d = RefCell::new(6);
1042 / c.swap(&d);
1043 / assert_eq!(c, RefCell::new(6));
1044 / assert_eq!(d, RefCell::new(5));
1045 / ```
1046 #[inline]
1047 #[stable(feature = "refcell_swap", since = "1.24.0")]
1048 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1049 pub const fn swap(&self, other: &Self) {
1050 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1051 }
1052}
1053
1054impl<T: ?Sized> RefCell<T> {
1055 / Immutably borrows the wrapped value.
1056 /
1057 / The borrow lasts until the returned `Ref` exits scope. Multiple
1058 / immutable borrows can be taken out at the same time.
1059 /
1060 / # Panics
1061 /
1062 / Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1063 / [`try_borrow`](#method.try_borrow).
1064 /
1065 / # Examples
1066 /
1067 / ```
1068 / use std::cell::RefCell;
1069 /
1070 / let c = RefCell::new(5);
1071 /
1072 / let borrowed_five = c.borrow();
1073 / let borrowed_five2 = c.borrow();
1074 / ```
1075 /
1076 / An example of panic:
1077 /
1078 / ```should_panic
1079 / use std::cell::RefCell;
1080 /
1081 / let c = RefCell::new(5);
1082 /
1083 / let m = c.borrow_mut();
1084 / let b = c.borrow(); / this causes a panic
1085 / ```
1086 #[stable(feature = "rust1", since = "1.0.0")]
1087 #[inline]
1088 #[track_caller]
1089 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1090 pub const fn borrow(&self) -> Ref<'_, T> {
1091 match self.try_borrow() {
1092 Ok(b) => b,
1093 Err(err) => panic_already_mutably_borrowed(err),
1094 }
1095 }
1096
1097 / Immutably borrows the wrapped value, returning an error if the value is currently mutably
1098 / borrowed.
1099 /
1100 / The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1101 / taken out at the same time.
1102 /
1103 / This is the non-panicking variant of [`borrow`](#method.borrow).
1104 /
1105 / # Examples
1106 /
1107 / ```
1108 / use std::cell::RefCell;
1109 /
1110 / let c = RefCell::new(5);
1111 /
1112 / {
1113 / let m = c.borrow_mut();
1114 / assert!(c.try_borrow().is_err());
1115 / }
1116 /
1117 / {
1118 / let m = c.borrow();
1119 / assert!(c.try_borrow().is_ok());
1120 / }
1121 / ```
1122 #[stable(feature = "try_borrow", since = "1.13.0")]
1123 #[inline]
1124 #[cfg_attr(feature = "debug_refcell", track_caller)]
1125 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1126 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1127 match BorrowRef::new(&self.borrow) {
1128 Some(b) => {
1129 #[cfg(feature = "debug_refcell")]
1130 {
1131 / `borrowed_at` is always the *first* active borrow
1132 if b.borrow.get() == 1 {
1133 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1134 }
1135 }
1136
1137 / SAFETY: `BorrowRef` ensures that there is only immutable access
1138 / to the value while borrowed.
1139 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1140 Ok(Ref { value, borrow: b })
1141 }
1142 None => Err(BorrowError {
1143 / If a borrow occurred, then we must already have an outstanding borrow,
1144 / so `borrowed_at` will be `Some`
1145 #[cfg(feature = "debug_refcell")]
1146 location: self.borrowed_at.get().unwrap(),
1147 }),
1148 }
1149 }
1150
1151 / Mutably borrows the wrapped value.
1152 /
1153 / The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1154 / from it exit scope. The value cannot be borrowed while this borrow is
1155 / active.
1156 /
1157 / # Panics
1158 /
1159 / Panics if the value is currently borrowed. For a non-panicking variant, use
1160 / [`try_borrow_mut`](#method.try_borrow_mut).
1161 /
1162 / # Examples
1163 /
1164 / ```
1165 / use std::cell::RefCell;
1166 /
1167 / let c = RefCell::new("hello".to_owned());
1168 /
1169 / *c.borrow_mut() = "bonjour".to_owned();
1170 /
1171 / assert_eq!(&*c.borrow(), "bonjour");
1172 / ```
1173 /
1174 / An example of panic:
1175 /
1176 / ```should_panic
1177 / use std::cell::RefCell;
1178 /
1179 / let c = RefCell::new(5);
1180 / let m = c.borrow();
1181 /
1182 / let b = c.borrow_mut(); / this causes a panic
1183 / ```
1184 #[stable(feature = "rust1", since = "1.0.0")]
1185 #[inline]
1186 #[track_caller]
1187 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1188 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1189 match self.try_borrow_mut() {
1190 Ok(b) => b,
1191 Err(err) => panic_already_borrowed(err),
1192 }
1193 }
1194
1195 / Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1196 /
1197 / The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1198 / from it exit scope. The value cannot be borrowed while this borrow is
1199 / active.
1200 /
1201 / This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1202 /
1203 / # Examples
1204 /
1205 / ```
1206 / use std::cell::RefCell;
1207 /
1208 / let c = RefCell::new(5);
1209 /
1210 / {
1211 / let m = c.borrow();
1212 / assert!(c.try_borrow_mut().is_err());
1213 / }
1214 /
1215 / assert!(c.try_borrow_mut().is_ok());
1216 / ```
1217 #[stable(feature = "try_borrow", since = "1.13.0")]
1218 #[inline]
1219 #[cfg_attr(feature = "debug_refcell", track_caller)]
1220 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1221 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1222 match BorrowRefMut::new(&self.borrow) {
1223 Some(b) => {
1224 #[cfg(feature = "debug_refcell")]
1225 {
1226 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1227 }
1228
1229 / SAFETY: `BorrowRefMut` guarantees unique access.
1230 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1231 Ok(RefMut { value, borrow: b, marker: PhantomData })
1232 }
1233 None => Err(BorrowMutError {
1234 / If a borrow occurred, then we must already have an outstanding borrow,
1235 / so `borrowed_at` will be `Some`
1236 #[cfg(feature = "debug_refcell")]
1237 location: self.borrowed_at.get().unwrap(),
1238 }),
1239 }
1240 }
1241
1242 / Returns a raw pointer to the underlying data in this cell.
1243 /
1244 / # Examples
1245 /
1246 / ```
1247 / use std::cell::RefCell;
1248 /
1249 / let c = RefCell::new(5);
1250 /
1251 / let ptr = c.as_ptr();
1252 / ```
1253 #[inline]
1254 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1255 #[rustc_as_ptr]
1256 #[rustc_never_returns_null_ptr]
1257 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1258 pub const fn as_ptr(&self) -> *mut T {
1259 self.value.get()
1260 }
1261
1262 / Returns a mutable reference to the underlying data.
1263 /
1264 / Since this method borrows `RefCell` mutably, it is statically guaranteed
1265 / that no borrows to the underlying data exist. The dynamic checks inherent
1266 / in [`borrow_mut`] and most other methods of `RefCell` are therefore
1267 / unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1268 / (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1269 / consider using the unstable [`undo_leak`] method.
1270 /
1271 / This method can only be called if `RefCell` can be mutably borrowed,
1272 / which in general is only the case directly after the `RefCell` has
1273 / been created. In these situations, skipping the aforementioned dynamic
1274 / borrowing checks may yield better ergonomics and runtime-performance.
1275 /
1276 / In most situations where `RefCell` is used, it can't be borrowed mutably.
1277 / Use [`borrow_mut`] to get mutable access to the underlying data then.
1278 /
1279 / [`borrow_mut`]: RefCell::borrow_mut()
1280 / [`forget()`]: mem::forget
1281 / [`undo_leak`]: RefCell::undo_leak()
1282 /
1283 / # Examples
1284 /
1285 / ```
1286 / use std::cell::RefCell;
1287 /
1288 / let mut c = RefCell::new(5);
1289 / *c.get_mut() += 1;
1290 /
1291 / assert_eq!(c, RefCell::new(6));
1292 / ```
1293 #[inline]
1294 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1295 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1296 pub const fn get_mut(&mut self) -> &mut T {
1297 self.value.get_mut()
1298 }
1299
1300 / Undo the effect of leaked guards on the borrow state of the `RefCell`.
1301 /
1302 / This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1303 / ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1304 / if some `Ref` or `RefMut` borrows have been leaked.
1305 /
1306 / [`get_mut`]: RefCell::get_mut()
1307 /
1308 / # Examples
1309 /
1310 / ```
1311 / #![feature(cell_leak)]
1312 / use std::cell::RefCell;
1313 /
1314 / let mut c = RefCell::new(0);
1315 / std::mem::forget(c.borrow_mut());
1316 /
1317 / assert!(c.try_borrow().is_err());
1318 / c.undo_leak();
1319 / assert!(c.try_borrow().is_ok());
1320 / ```
1321 #[unstable(feature = "cell_leak", issue = "69099")]
1322 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1323 pub const fn undo_leak(&mut self) -> &mut T {
1324 *self.borrow.get_mut() = UNUSED;
1325 self.get_mut()
1326 }
1327
1328 / Immutably borrows the wrapped value, returning an error if the value is
1329 / currently mutably borrowed.
1330 /
1331 / # Safety
1332 /
1333 / Unlike `RefCell::borrow`, this method is unsafe because it does not
1334 / return a `Ref`, thus leaving the borrow flag untouched. Mutably
1335 / borrowing the `RefCell` while the reference returned by this method
1336 / is alive is undefined behavior.
1337 /
1338 / # Examples
1339 /
1340 / ```
1341 / use std::cell::RefCell;
1342 /
1343 / let c = RefCell::new(5);
1344 /
1345 / {
1346 / let m = c.borrow_mut();
1347 / assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1348 / }
1349 /
1350 / {
1351 / let m = c.borrow();
1352 / assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1353 / }
1354 / ```
1355 #[stable(feature = "borrow_state", since = "1.37.0")]
1356 #[inline]
1357 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1358 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1359 if !is_writing(self.borrow.get()) {
1360 / SAFETY: We check that nobody is actively writing now, but it is
1361 / the caller's responsibility to ensure that nobody writes until
1362 / the returned reference is no longer in use.
1363 / Also, `self.value.get()` refers to the value owned by `self`
1364 / and is thus guaranteed to be valid for the lifetime of `self`.
1365 Ok(unsafe { &*self.value.get() })
1366 } else {
1367 Err(BorrowError {
1368 / If a borrow occurred, then we must already have an outstanding borrow,
1369 / so `borrowed_at` will be `Some`
1370 #[cfg(feature = "debug_refcell")]
1371 location: self.borrowed_at.get().unwrap(),
1372 })
1373 }
1374 }
1375}
1376
1377impl<T: Default> RefCell<T> {
1378 / Takes the wrapped value, leaving `Default::default()` in its place.
1379 /
1380 / # Panics
1381 /
1382 / Panics if the value is currently borrowed.
1383 /
1384 / # Examples
1385 /
1386 / ```
1387 / use std::cell::RefCell;
1388 /
1389 / let c = RefCell::new(5);
1390 / let five = c.take();
1391 /
1392 / assert_eq!(five, 5);
1393 / assert_eq!(c.into_inner(), 0);
1394 / ```
1395 #[stable(feature = "refcell_take", since = "1.50.0")]
1396 pub fn take(&self) -> T {
1397 self.replace(Default::default())
1398 }
1399}
1400
1401#[stable(feature = "rust1", since = "1.0.0")]
1402unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1403
1404#[stable(feature = "rust1", since = "1.0.0")]
1405impl<T: ?Sized> !Sync for RefCell<T> {}
1406
1407#[stable(feature = "rust1", since = "1.0.0")]
1408impl<T: Clone> Clone for RefCell<T> {
1409 / # Panics
1410 /
1411 / Panics if the value is currently mutably borrowed.
1412 #[inline]
1413 #[track_caller]
1414 fn clone(&self) -> RefCell<T> {
1415 RefCell::new(self.borrow().clone())
1416 }
1417
1418 / # Panics
1419 /
1420 / Panics if `source` is currently mutably borrowed.
1421 #[inline]
1422 #[track_caller]
1423 fn clone_from(&mut self, source: &Self) {
1424 self.get_mut().clone_from(&source.borrow())
1425 }
1426}
1427
1428#[stable(feature = "rust1", since = "1.0.0")]
1429#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1430impl<T: [const] Default> const Default for RefCell<T> {
1431 / Creates a `RefCell<T>`, with the `Default` value for T.
1432 #[inline]
1433 fn default() -> RefCell<T> {
1434 RefCell::new(Default::default())
1435 }
1436}
1437
1438#[stable(feature = "rust1", since = "1.0.0")]
1439impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1440 / # Panics
1441 /
1442 / Panics if the value in either `RefCell` is currently mutably borrowed.
1443 #[inline]
1444 fn eq(&self, other: &RefCell<T>) -> bool {
1445 *self.borrow() == *other.borrow()
1446 }
1447}
1448
1449#[stable(feature = "cell_eq", since = "1.2.0")]
1450impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1451
1452#[stable(feature = "cell_ord", since = "1.10.0")]
1453impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1454 / # Panics
1455 /
1456 / Panics if the value in either `RefCell` is currently mutably borrowed.
1457 #[inline]
1458 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1459 self.borrow().partial_cmp(&*other.borrow())
1460 }
1461
1462 / # Panics
1463 /
1464 / Panics if the value in either `RefCell` is currently mutably borrowed.
1465 #[inline]
1466 fn lt(&self, other: &RefCell<T>) -> bool {
1467 *self.borrow() < *other.borrow()
1468 }
1469
1470 / # Panics
1471 /
1472 / Panics if the value in either `RefCell` is currently mutably borrowed.
1473 #[inline]
1474 fn le(&self, other: &RefCell<T>) -> bool {
1475 *self.borrow() <= *other.borrow()
1476 }
1477
1478 / # Panics
1479 /
1480 / Panics if the value in either `RefCell` is currently mutably borrowed.
1481 #[inline]
1482 fn gt(&self, other: &RefCell<T>) -> bool {
1483 *self.borrow() > *other.borrow()
1484 }
1485
1486 / # Panics
1487 /
1488 / Panics if the value in either `RefCell` is currently mutably borrowed.
1489 #[inline]
1490 fn ge(&self, other: &RefCell<T>) -> bool {
1491 *self.borrow() >= *other.borrow()
1492 }
1493}
1494
1495#[stable(feature = "cell_ord", since = "1.10.0")]
1496impl<T: ?Sized + Ord> Ord for RefCell<T> {
1497 / # Panics
1498 /
1499 / Panics if the value in either `RefCell` is currently mutably borrowed.
1500 #[inline]
1501 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1502 self.borrow().cmp(&*other.borrow())
1503 }
1504}
1505
1506#[stable(feature = "cell_from", since = "1.12.0")]
1507#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1508impl<T> const From<T> for RefCell<T> {
1509 / Creates a new `RefCell<T>` containing the given value.
1510 fn from(t: T) -> RefCell<T> {
1511 RefCell::new(t)
1512 }
1513}
1514
1515#[unstable(feature = "coerce_unsized", issue = "18598")]
1516impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1517
1518struct BorrowRef<'b> {
1519 borrow: &'b Cell<BorrowCounter>,
1520}
1521
1522impl<'b> BorrowRef<'b> {
1523 #[inline]
1524 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1525 let b = borrow.get().wrapping_add(1);
1526 if !is_reading(b) {
1527 / Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1528 / 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1529 / due to Rust's reference aliasing rules
1530 / 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1531 / into isize::MIN (the max amount of writing borrows) so we can't allow
1532 / an additional read borrow because isize can't represent so many read borrows
1533 / (this can only happen if you mem::forget more than a small constant amount of
1534 / `Ref`s, which is not good practice)
1535 None
1536 } else {
1537 / Incrementing borrow can result in a reading value (> 0) in these cases:
1538 / 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1539 / 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1540 / is large enough to represent having one more read borrow
1541 borrow.replace(b);
1542 Some(BorrowRef { borrow })
1543 }
1544 }
1545}
1546
1547#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1548impl const Drop for BorrowRef<'_> {
1549 #[inline]
1550 fn drop(&mut self) {
1551 let borrow = self.borrow.get();
1552 debug_assert!(is_reading(borrow));
1553 self.borrow.replace(borrow - 1);
1554 }
1555}
1556
1557#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1558impl const Clone for BorrowRef<'_> {
1559 #[inline]
1560 fn clone(&self) -> Self {
1561 / Since this Ref exists, we know the borrow flag
1562 / is a reading borrow.
1563 let borrow = self.borrow.get();
1564 debug_assert!(is_reading(borrow));
1565 / Prevent the borrow counter from overflowing into
1566 / a writing borrow.
1567 assert!(borrow != BorrowCounter::MAX);
1568 self.borrow.replace(borrow + 1);
1569 BorrowRef { borrow: self.borrow }
1570 }
1571}
1572
1573/ Wraps a borrowed reference to a value in a `RefCell` box.
1574/ A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1575/
1576/ See the [module-level documentation](self) for more.
1577#[stable(feature = "rust1", since = "1.0.0")]
1578#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1579#[rustc_diagnostic_item = "RefCellRef"]
1580pub struct Ref<'b, T: ?Sized + 'b> {
1581 / NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1582 / `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1583 / `NonNull` is also covariant over `T`, just like we would have with `&T`.
1584 value: NonNull<T>,
1585 borrow: BorrowRef<'b>,
1586}
1587
1588#[stable(feature = "rust1", since = "1.0.0")]
1589#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1590impl<T: ?Sized> const Deref for Ref<'_, T> {
1591 type Target = T;
1592
1593 #[inline]
1594 fn deref(&self) -> &T {
1595 / SAFETY: the value is accessible as long as we hold our borrow.
1596 unsafe { self.value.as_ref() }
1597 }
1598}
1599
1600#[unstable(feature = "deref_pure_trait", issue = "87121")]
1601unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1602
1603impl<'b, T: ?Sized> Ref<'b, T> {
1604 / Copies a `Ref`.
1605 /
1606 / The `RefCell` is already immutably borrowed, so this cannot fail.
1607 /
1608 / This is an associated function that needs to be used as
1609 / `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1610 / with the widespread use of `r.borrow().clone()` to clone the contents of
1611 / a `RefCell`.
1612 #[stable(feature = "cell_extras", since = "1.15.0")]
1613 #[must_use]
1614 #[inline]
1615 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1616 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1617 Ref { value: orig.value, borrow: orig.borrow.clone() }
1618 }
1619
1620 / Makes a new `Ref` for a component of the borrowed data.
1621 /
1622 / The `RefCell` is already immutably borrowed, so this cannot fail.
1623 /
1624 / This is an associated function that needs to be used as `Ref::map(...)`.
1625 / A method would interfere with methods of the same name on the contents
1626 / of a `RefCell` used through `Deref`.
1627 /
1628 / # Examples
1629 /
1630 / ```
1631 / use std::cell::{RefCell, Ref};
1632 /
1633 / let c = RefCell::new((5, 'b'));
1634 / let b1: Ref<'_, (u32, char)> = c.borrow();
1635 / let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1636 / assert_eq!(*b2, 5)
1637 / ```
1638 #[stable(feature = "cell_map", since = "1.8.0")]
1639 #[inline]
1640 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1641 where
1642 F: FnOnce(&T) -> &U,
1643 {
1644 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1645 }
1646
1647 / Makes a new `Ref` for an optional component of the borrowed data. The
1648 / original guard is returned as an `Err(..)` if the closure returns
1649 / `None`.
1650 /
1651 / The `RefCell` is already immutably borrowed, so this cannot fail.
1652 /
1653 / This is an associated function that needs to be used as
1654 / `Ref::filter_map(...)`. A method would interfere with methods of the same
1655 / name on the contents of a `RefCell` used through `Deref`.
1656 /
1657 / # Examples
1658 /
1659 / ```
1660 / use std::cell::{RefCell, Ref};
1661 /
1662 / let c = RefCell::new(vec![1, 2, 3]);
1663 / let b1: Ref<'_, Vec<u32>> = c.borrow();
1664 / let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1665 / assert_eq!(*b2.unwrap(), 2);
1666 / ```
1667 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1668 #[inline]
1669 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1670 where
1671 F: FnOnce(&T) -> Option<&U>,
1672 {
1673 match f(&*orig) {
1674 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1675 None => Err(orig),
1676 }
1677 }
1678
1679 / Tries to makes a new `Ref` for a component of the borrowed data.
1680 / On failure, the original guard is returned alongside with the error
1681 / returned by the closure.
1682 /
1683 / The `RefCell` is already immutably borrowed, so this cannot fail.
1684 /
1685 / This is an associated function that needs to be used as
1686 / `Ref::try_map(...)`. A method would interfere with methods of the same
1687 / name on the contents of a `RefCell` used through `Deref`.
1688 /
1689 / # Examples
1690 /
1691 / ```
1692 / #![feature(refcell_try_map)]
1693 / use std::cell::{RefCell, Ref};
1694 / use std::str::{from_utf8, Utf8Error};
1695 /
1696 / let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1697 / let b1: Ref<'_, Vec<u8>> = c.borrow();
1698 / let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1699 / assert_eq!(&*b2.unwrap(), "🦀");
1700 /
1701 / let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1702 / let b1: Ref<'_, Vec<u8>> = c.borrow();
1703 / let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1704 / let (b3, e) = b2.unwrap_err();
1705 / assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1706 / assert_eq!(e.valid_up_to(), 0);
1707 / ```
1708 #[unstable(feature = "refcell_try_map", issue = "143801")]
1709 #[inline]
1710 pub fn try_map<U: ?Sized, E>(
1711 orig: Ref<'b, T>,
1712 f: impl FnOnce(&T) -> Result<&U, E>,
1713 ) -> Result<Ref<'b, U>, (Self, E)> {
1714 match f(&*orig) {
1715 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1716 Err(e) => Err((orig, e)),
1717 }
1718 }
1719
1720 / Splits a `Ref` into multiple `Ref`s for different components of the
1721 / borrowed data.
1722 /
1723 / The `RefCell` is already immutably borrowed, so this cannot fail.
1724 /
1725 / This is an associated function that needs to be used as
1726 / `Ref::map_split(...)`. A method would interfere with methods of the same
1727 / name on the contents of a `RefCell` used through `Deref`.
1728 /
1729 / # Examples
1730 /
1731 / ```
1732 / use std::cell::{Ref, RefCell};
1733 /
1734 / let cell = RefCell::new([1, 2, 3, 4]);
1735 / let borrow = cell.borrow();
1736 / let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1737 / assert_eq!(*begin, [1, 2]);
1738 / assert_eq!(*end, [3, 4]);
1739 / ```
1740 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1741 #[inline]
1742 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1743 where
1744 F: FnOnce(&T) -> (&U, &V),
1745 {
1746 let (a, b) = f(&*orig);
1747 let borrow = orig.borrow.clone();
1748 (
1749 Ref { value: NonNull::from(a), borrow },
1750 Ref { value: NonNull::from(b), borrow: orig.borrow },
1751 )
1752 }
1753
1754 / Converts into a reference to the underlying data.
1755 /
1756 / The underlying `RefCell` can never be mutably borrowed from again and will always appear
1757 / already immutably borrowed. It is not a good idea to leak more than a constant number of
1758 / references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1759 / have occurred in total.
1760 /
1761 / This is an associated function that needs to be used as
1762 / `Ref::leak(...)`. A method would interfere with methods of the
1763 / same name on the contents of a `RefCell` used through `Deref`.
1764 /
1765 / # Examples
1766 /
1767 / ```
1768 / #![feature(cell_leak)]
1769 / use std::cell::{RefCell, Ref};
1770 / let cell = RefCell::new(0);
1771 /
1772 / let value = Ref::leak(cell.borrow());
1773 / assert_eq!(*value, 0);
1774 /
1775 / assert!(cell.try_borrow().is_ok());
1776 / assert!(cell.try_borrow_mut().is_err());
1777 / ```
1778 #[unstable(feature = "cell_leak", issue = "69099")]
1779 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1780 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1781 / By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1782 / UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1783 / unique reference to the borrowed RefCell. No further mutable references can be created
1784 / from the original cell.
1785 mem::forget(orig.borrow);
1786 / SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1787 unsafe { orig.value.as_ref() }
1788 }
1789}
1790
1791#[unstable(feature = "coerce_unsized", issue = "18598")]
1792impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1793
1794#[stable(feature = "std_guard_impls", since = "1.20.0")]
1795impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1796 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1797 (**self).fmt(f)
1798 }
1799}
1800
1801impl<'b, T: ?Sized> RefMut<'b, T> {
1802 / Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1803 / variant.
1804 /
1805 / The `RefCell` is already mutably borrowed, so this cannot fail.
1806 /
1807 / This is an associated function that needs to be used as
1808 / `RefMut::map(...)`. A method would interfere with methods of the same
1809 / name on the contents of a `RefCell` used through `Deref`.
1810 /
1811 / # Examples
1812 /
1813 / ```
1814 / use std::cell::{RefCell, RefMut};
1815 /
1816 / let c = RefCell::new((5, 'b'));
1817 / {
1818 / let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1819 / let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1820 / assert_eq!(*b2, 5);
1821 / *b2 = 42;
1822 / }
1823 / assert_eq!(*c.borrow(), (42, 'b'));
1824 / ```
1825 #[stable(feature = "cell_map", since = "1.8.0")]
1826 #[inline]
1827 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1828 where
1829 F: FnOnce(&mut T) -> &mut U,
1830 {
1831 let value = NonNull::from(f(&mut *orig));
1832 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1833 }
1834
1835 / Makes a new `RefMut` for an optional component of the borrowed data. The
1836 / original guard is returned as an `Err(..)` if the closure returns
1837 / `None`.
1838 /
1839 / The `RefCell` is already mutably borrowed, so this cannot fail.
1840 /
1841 / This is an associated function that needs to be used as
1842 / `RefMut::filter_map(...)`. A method would interfere with methods of the
1843 / same name on the contents of a `RefCell` used through `Deref`.
1844 /
1845 / # Examples
1846 /
1847 / ```
1848 / use std::cell::{RefCell, RefMut};
1849 /
1850 / let c = RefCell::new(vec![1, 2, 3]);
1851 /
1852 / {
1853 / let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1854 / let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1855 /
1856 / if let Ok(mut b2) = b2 {
1857 / *b2 += 2;
1858 / }
1859 / }
1860 /
1861 / assert_eq!(*c.borrow(), vec![1, 4, 3]);
1862 / ```
1863 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1864 #[inline]
1865 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1866 where
1867 F: FnOnce(&mut T) -> Option<&mut U>,
1868 {
1869 / SAFETY: function holds onto an exclusive reference for the duration
1870 / of its call through `orig`, and the pointer is only de-referenced
1871 / inside of the function call never allowing the exclusive reference to
1872 / escape.
1873 match f(&mut *orig) {
1874 Some(value) => {
1875 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1876 }
1877 None => Err(orig),
1878 }
1879 }
1880
1881 / Tries to makes a new `RefMut` for a component of the borrowed data.
1882 / On failure, the original guard is returned alongside with the error
1883 / returned by the closure.
1884 /
1885 / The `RefCell` is already mutably borrowed, so this cannot fail.
1886 /
1887 / This is an associated function that needs to be used as
1888 / `RefMut::try_map(...)`. A method would interfere with methods of the same
1889 / name on the contents of a `RefCell` used through `Deref`.
1890 /
1891 / # Examples
1892 /
1893 / ```
1894 / #![feature(refcell_try_map)]
1895 / use std::cell::{RefCell, RefMut};
1896 / use std::str::{from_utf8_mut, Utf8Error};
1897 /
1898 / let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1899 / {
1900 / let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1901 / let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1902 / let mut b2 = b2.unwrap();
1903 / assert_eq!(&*b2, "hello");
1904 / b2.make_ascii_uppercase();
1905 / }
1906 / assert_eq!(*c.borrow(), "HELLO".as_bytes());
1907 /
1908 / let c = RefCell::new(vec![0xFF]);
1909 / let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1910 / let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1911 / let (b3, e) = b2.unwrap_err();
1912 / assert_eq!(*b3, vec![0xFF]);
1913 / assert_eq!(e.valid_up_to(), 0);
1914 / ```
1915 #[unstable(feature = "refcell_try_map", issue = "143801")]
1916 #[inline]
1917 pub fn try_map<U: ?Sized, E>(
1918 mut orig: RefMut<'b, T>,
1919 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1920 ) -> Result<RefMut<'b, U>, (Self, E)> {
1921 / SAFETY: function holds onto an exclusive reference for the duration
1922 / of its call through `orig`, and the pointer is only de-referenced
1923 / inside of the function call never allowing the exclusive reference to
1924 / escape.
1925 match f(&mut *orig) {
1926 Ok(value) => {
1927 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1928 }
1929 Err(e) => Err((orig, e)),
1930 }
1931 }
1932
1933 / Splits a `RefMut` into multiple `RefMut`s for different components of the
1934 / borrowed data.
1935 /
1936 / The underlying `RefCell` will remain mutably borrowed until both
1937 / returned `RefMut`s go out of scope.
1938 /
1939 / The `RefCell` is already mutably borrowed, so this cannot fail.
1940 /
1941 / This is an associated function that needs to be used as
1942 / `RefMut::map_split(...)`. A method would interfere with methods of the
1943 / same name on the contents of a `RefCell` used through `Deref`.
1944 /
1945 / # Examples
1946 /
1947 / ```
1948 / use std::cell::{RefCell, RefMut};
1949 /
1950 / let cell = RefCell::new([1, 2, 3, 4]);
1951 / let borrow = cell.borrow_mut();
1952 / let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1953 / assert_eq!(*begin, [1, 2]);
1954 / assert_eq!(*end, [3, 4]);
1955 / begin.copy_from_slice(&[4, 3]);
1956 / end.copy_from_slice(&[2, 1]);
1957 / ```
1958 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1959 #[inline]
1960 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1961 mut orig: RefMut<'b, T>,
1962 f: F,
1963 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1964 where
1965 F: FnOnce(&mut T) -> (&mut U, &mut V),
1966 {
1967 let borrow = orig.borrow.clone();
1968 let (a, b) = f(&mut *orig);
1969 (
1970 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1971 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1972 )
1973 }
1974
1975 / Converts into a mutable reference to the underlying data.
1976 /
1977 / The underlying `RefCell` can not be borrowed from again and will always appear already
1978 / mutably borrowed, making the returned reference the only to the interior.
1979 /
1980 / This is an associated function that needs to be used as
1981 / `RefMut::leak(...)`. A method would interfere with methods of the
1982 / same name on the contents of a `RefCell` used through `Deref`.
1983 /
1984 / # Examples
1985 /
1986 / ```
1987 / #![feature(cell_leak)]
1988 / use std::cell::{RefCell, RefMut};
1989 / let cell = RefCell::new(0);
1990 /
1991 / let value = RefMut::leak(cell.borrow_mut());
1992 / assert_eq!(*value, 0);
1993 / *value = 1;
1994 /
1995 / assert!(cell.try_borrow_mut().is_err());
1996 / ```
1997 #[unstable(feature = "cell_leak", issue = "69099")]
1998 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1999 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2000 / By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2001 / go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2002 / require a unique reference to the borrowed RefCell. No further references can be created
2003 / from the original cell within that lifetime, making the current borrow the only
2004 / reference for the remaining lifetime.
2005 mem::forget(orig.borrow);
2006 / SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2007 unsafe { orig.value.as_mut() }
2008 }
2009}
2010
2011struct BorrowRefMut<'b> {
2012 borrow: &'b Cell<BorrowCounter>,
2013}
2014
2015#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2016impl const Drop for BorrowRefMut<'_> {
2017 #[inline]
2018 fn drop(&mut self) {
2019 let borrow = self.borrow.get();
2020 debug_assert!(is_writing(borrow));
2021 self.borrow.replace(borrow + 1);
2022 }
2023}
2024
2025impl<'b> BorrowRefMut<'b> {
2026 #[inline]
2027 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2028 / NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2029 / mutable reference, and so there must currently be no existing
2030 / references. Thus, while clone increments the mutable refcount, here
2031 / we explicitly only allow going from UNUSED to UNUSED - 1.
2032 match borrow.get() {
2033 UNUSED => {
2034 borrow.replace(UNUSED - 1);
2035 Some(BorrowRefMut { borrow })
2036 }
2037 _ => None,
2038 }
2039 }
2040
2041 / Clones a `BorrowRefMut`.
2042 /
2043 / This is only valid if each `BorrowRefMut` is used to track a mutable
2044 / reference to a distinct, nonoverlapping range of the original object.
2045 / This isn't in a Clone impl so that code doesn't call this implicitly.
2046 #[inline]
2047 fn clone(&self) -> BorrowRefMut<'b> {
2048 let borrow = self.borrow.get();
2049 debug_assert!(is_writing(borrow));
2050 / Prevent the borrow counter from underflowing.
2051 assert!(borrow != BorrowCounter::MIN);
2052 self.borrow.set(borrow - 1);
2053 BorrowRefMut { borrow: self.borrow }
2054 }
2055}
2056
2057/ A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2058/
2059/ See the [module-level documentation](self) for more.
2060#[stable(feature = "rust1", since = "1.0.0")]
2061#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2062#[rustc_diagnostic_item = "RefCellRefMut"]
2063pub struct RefMut<'b, T: ?Sized + 'b> {
2064 / NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2065 / `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2066 value: NonNull<T>,
2067 borrow: BorrowRefMut<'b>,
2068 / `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2069 marker: PhantomData<&'b mut T>,
2070}
2071
2072#[stable(feature = "rust1", since = "1.0.0")]
2073#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2074impl<T: ?Sized> const Deref for RefMut<'_, T> {
2075 type Target = T;
2076
2077 #[inline]
2078 fn deref(&self) -> &T {
2079 / SAFETY: the value is accessible as long as we hold our borrow.
2080 unsafe { self.value.as_ref() }
2081 }
2082}
2083
2084#[stable(feature = "rust1", since = "1.0.0")]
2085#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2086impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2087 #[inline]
2088 fn deref_mut(&mut self) -> &mut T {
2089 / SAFETY: the value is accessible as long as we hold our borrow.
2090 unsafe { self.value.as_mut() }
2091 }
2092}
2093
2094#[unstable(feature = "deref_pure_trait", issue = "87121")]
2095unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2096
2097#[unstable(feature = "coerce_unsized", issue = "18598")]
2098impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2099
2100#[stable(feature = "std_guard_impls", since = "1.20.0")]
2101impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2102 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2103 (**self).fmt(f)
2104 }
2105}
2106
2107/ The core primitive for interior mutability in Rust.
2108/
2109/ If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2110/ the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2111/ alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2112/ `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2113/ `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2114/
2115/ All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2116/ use `UnsafeCell` to wrap their data.
2117/
2118/ Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2119/ uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2120/ aliasing `&mut`, not even with `UnsafeCell<T>`.
2121/
2122/ `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2123/ threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2124/ [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2125/ [`core::sync::atomic`].
2126/
2127/ The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2128/ `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2129/ correctly.
2130/
2131/ [`.get()`]: `UnsafeCell::get`
2132/ [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2133/
2134/ # Aliasing rules
2135/
2136/ The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2137/
2138/ - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2139/ you must not access the data in any way that contradicts that reference for the remainder of
2140/ `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2141/ to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2142/ within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2143/ `&mut T` reference that is released to safe code, then you must not access the data within the
2144/ `UnsafeCell` until that reference expires.
2145/
2146/ - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2147/ until the reference expires. As a special exception, given an `&T`, any part of it that is
2148/ inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2149/ last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2150/ of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2151/ *every part of it* (including padding) is inside an `UnsafeCell`.
2152/
2153/ However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2154/ live memory and the compiler is allowed to insert spurious reads if it can prove that this
2155/ memory has not yet been deallocated.
2156/
2157/ To assist with proper design, the following scenarios are explicitly declared legal
2158/ for single-threaded code:
2159/
2160/ 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2161/ references, but not with a `&mut T`
2162/
2163/ 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2164/ co-exist with it. A `&mut T` must always be unique.
2165/
2166/ Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2167/ `&UnsafeCell<T>` references alias the cell) is
2168/ ok (provided you enforce the above invariants some other way), it is still undefined behavior
2169/ to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2170/ designed to have a special interaction with _shared_ accesses (_i.e._, through an
2171/ `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2172/ accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2173/ may be aliased for the duration of that `&mut` borrow.
2174/ This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2175/ a `&mut T`.
2176/
2177/ [`.get_mut()`]: `UnsafeCell::get_mut`
2178/
2179/ # Memory layout
2180/
2181/ `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2182/ of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2183/ Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2184/ to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2185/ optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2186/ 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2187/ Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2188/ having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2189/ order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2190/ thus this can cause distortions in the type size in these cases.
2191/
2192/ Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2193/ _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2194/ can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2195/ on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2196/ same memory layout, the following is not allowed and undefined behavior:
2197/
2198/ ```rust,compile_fail
2199/ # use std::cell::UnsafeCell;
2200/ unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2201/ let t = ptr as *const UnsafeCell<T> as *mut T;
2202/ / This is undefined behavior, because the `*mut T` pointer
2203/ / was not obtained through `.get()` nor `.raw_get()`:
2204/ unsafe { &mut *t }
2205/ }
2206/ ```
2207/
2208/ Instead, do this:
2209/
2210/ ```rust
2211/ # use std::cell::UnsafeCell;
2212/ / Safety: the caller must ensure that there are no references that
2213/ / point to the *contents* of the `UnsafeCell`.
2214/ unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2215/ unsafe { &mut *ptr.get() }
2216/ }
2217/ ```
2218/
2219/ Converting in the other direction from a `&mut T`
2220/ to an `&UnsafeCell<T>` is allowed:
2221/
2222/ ```rust
2223/ # use std::cell::UnsafeCell;
2224/ fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2225/ let t = ptr as *mut T as *const UnsafeCell<T>;
2226/ / SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2227/ unsafe { &*t }
2228/ }
2229/ ```
2230/
2231/ [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2232/ [`.raw_get()`]: `UnsafeCell::raw_get`
2233/
2234/ # Examples
2235/
2236/ Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2237/ there being multiple references aliasing the cell:
2238/
2239/ ```
2240/ use std::cell::UnsafeCell;
2241/
2242/ let x: UnsafeCell<i32> = 42.into();
2243/ / Get multiple / concurrent / shared references to the same `x`.
2244/ let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2245/
2246/ unsafe {
2247/ / SAFETY: within this scope there are no other references to `x`'s contents,
2248/ / so ours is effectively unique.
2249/ let p1_exclusive: &mut i32 = &mut *p1.get(); / -- borrow --+
2250/ *p1_exclusive += 27; / |
2251/ } / <---------- cannot go beyond this point -------------------+
2252/
2253/ unsafe {
2254/ / SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2255/ / so we can have multiple shared accesses concurrently.
2256/ let p2_shared: &i32 = &*p2.get();
2257/ assert_eq!(*p2_shared, 42 + 27);
2258/ let p1_shared: &i32 = &*p1.get();
2259/ assert_eq!(*p1_shared, *p2_shared);
2260/ }
2261/ ```
2262/
2263/ The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2264/ implies exclusive access to its `T`:
2265/
2266/ ```rust
2267/ #![forbid(unsafe_code)]
2268/ / with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2269/ / `unsafe` here.
2270/ use std::cell::UnsafeCell;
2271/
2272/ let mut x: UnsafeCell<i32> = 42.into();
2273/
2274/ / Get a compile-time-checked unique reference to `x`.
2275/ let p_unique: &mut UnsafeCell<i32> = &mut x;
2276/ / With an exclusive reference, we can mutate the contents for free.
2277/ *p_unique.get_mut() = 0;
2278/ / Or, equivalently:
2279/ x = UnsafeCell::new(0);
2280/
2281/ / When we own the value, we can extract the contents for free.
2282/ let contents: i32 = x.into_inner();
2283/ assert_eq!(contents, 0);
2284/ ```
2285#[lang = "unsafe_cell"]
2286#[stable(feature = "rust1", since = "1.0.0")]
2287#[repr(transparent)]
2288#[rustc_pub_transparent]
2289pub struct UnsafeCell<T: ?Sized> {
2290 value: T,
2291}
2292
2293#[stable(feature = "rust1", since = "1.0.0")]
2294impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2295
2296impl<T> UnsafeCell<T> {
2297 / Constructs a new instance of `UnsafeCell` which will wrap the specified
2298 / value.
2299 /
2300 / All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2301 /
2302 / # Examples
2303 /
2304 / ```
2305 / use std::cell::UnsafeCell;
2306 /
2307 / let uc = UnsafeCell::new(5);
2308 / ```
2309 #[stable(feature = "rust1", since = "1.0.0")]
2310 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2311 #[inline(always)]
2312 pub const fn new(value: T) -> UnsafeCell<T> {
2313 UnsafeCell { value }
2314 }
2315
2316 / Unwraps the value, consuming the cell.
2317 /
2318 / # Examples
2319 /
2320 / ```
2321 / use std::cell::UnsafeCell;
2322 /
2323 / let uc = UnsafeCell::new(5);
2324 /
2325 / let five = uc.into_inner();
2326 / ```
2327 #[inline(always)]
2328 #[stable(feature = "rust1", since = "1.0.0")]
2329 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2330 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2331 pub const fn into_inner(self) -> T {
2332 self.value
2333 }
2334
2335 / Replace the value in this `UnsafeCell` and return the old value.
2336 /
2337 / # Safety
2338 /
2339 / The caller must take care to avoid aliasing and data races.
2340 /
2341 / - It is Undefined Behavior to allow calls to race with
2342 / any other access to the wrapped value.
2343 / - It is Undefined Behavior to call this while any other
2344 / reference(s) to the wrapped value are alive.
2345 /
2346 / # Examples
2347 /
2348 / ```
2349 / #![feature(unsafe_cell_access)]
2350 / use std::cell::UnsafeCell;
2351 /
2352 / let uc = UnsafeCell::new(5);
2353 /
2354 / let old = unsafe { uc.replace(10) };
2355 / assert_eq!(old, 5);
2356 / ```
2357 #[inline]
2358 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2359 pub const unsafe fn replace(&self, value: T) -> T {
2360 / SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2361 unsafe { ptr::replace(self.get(), value) }
2362 }
2363}
2364
2365impl<T: ?Sized> UnsafeCell<T> {
2366 / Converts from `&mut T` to `&mut UnsafeCell<T>`.
2367 /
2368 / # Examples
2369 /
2370 / ```
2371 / use std::cell::UnsafeCell;
2372 /
2373 / let mut val = 42;
2374 / let uc = UnsafeCell::from_mut(&mut val);
2375 /
2376 / *uc.get_mut() -= 1;
2377 / assert_eq!(*uc.get_mut(), 41);
2378 / ```
2379 #[inline(always)]
2380 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2381 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2382 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2383 / SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2384 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2385 }
2386
2387 / Gets a mutable pointer to the wrapped value.
2388 /
2389 / This can be cast to a pointer of any kind. When creating references, you must uphold the
2390 / aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2391 / caveats.
2392 /
2393 / # Examples
2394 /
2395 / ```
2396 / use std::cell::UnsafeCell;
2397 /
2398 / let uc = UnsafeCell::new(5);
2399 /
2400 / let five = uc.get();
2401 / ```
2402 #[inline(always)]
2403 #[stable(feature = "rust1", since = "1.0.0")]
2404 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2405 #[rustc_as_ptr]
2406 #[rustc_never_returns_null_ptr]
2407 pub const fn get(&self) -> *mut T {
2408 / We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2409 / #[repr(transparent)]. This exploits std's special status, there is
2410 / no guarantee for user code that this will work in future versions of the compiler!
2411 self as *const UnsafeCell<T> as *const T as *mut T
2412 }
2413
2414 / Returns a mutable reference to the underlying data.
2415 /
2416 / This call borrows the `UnsafeCell` mutably (at compile-time) which
2417 / guarantees that we possess the only reference.
2418 /
2419 / # Examples
2420 /
2421 / ```
2422 / use std::cell::UnsafeCell;
2423 /
2424 / let mut c = UnsafeCell::new(5);
2425 / *c.get_mut() += 1;
2426 /
2427 / assert_eq!(*c.get_mut(), 6);
2428 / ```
2429 #[inline(always)]
2430 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2431 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2432 pub const fn get_mut(&mut self) -> &mut T {
2433 &mut self.value
2434 }
2435
2436 / Gets a mutable pointer to the wrapped value.
2437 / The difference from [`get`] is that this function accepts a raw pointer,
2438 / which is useful to avoid the creation of temporary references.
2439 /
2440 / This can be cast to a pointer of any kind. When creating references, you must uphold the
2441 / aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2442 / caveats.
2443 /
2444 / [`get`]: UnsafeCell::get()
2445 /
2446 / # Examples
2447 /
2448 / Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2449 / calling `get` would require creating a reference to uninitialized data:
2450 /
2451 / ```
2452 / use std::cell::UnsafeCell;
2453 / use std::mem::MaybeUninit;
2454 /
2455 / let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2456 / unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2457 / / avoid below which references to uninitialized data
2458 / / unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2459 / let uc = unsafe { m.assume_init() };
2460 /
2461 / assert_eq!(uc.into_inner(), 5);
2462 / ```
2463 #[inline(always)]
2464 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2465 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2466 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2467 pub const fn raw_get(this: *const Self) -> *mut T {
2468 / We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2469 / #[repr(transparent)]. This exploits std's special status, there is
2470 / no guarantee for user code that this will work in future versions of the compiler!
2471 this as *const T as *mut T
2472 }
2473
2474 / Get a shared reference to the value within the `UnsafeCell`.
2475 /
2476 / # Safety
2477 /
2478 / - It is Undefined Behavior to call this while any mutable
2479 / reference to the wrapped value is alive.
2480 / - Mutating the wrapped value while the returned
2481 / reference is alive is Undefined Behavior.
2482 /
2483 / # Examples
2484 /
2485 / ```
2486 / #![feature(unsafe_cell_access)]
2487 / use std::cell::UnsafeCell;
2488 /
2489 / let uc = UnsafeCell::new(5);
2490 /
2491 / let val = unsafe { uc.as_ref_unchecked() };
2492 / assert_eq!(val, &5);
2493 / ```
2494 #[inline]
2495 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2496 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2497 / SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2498 unsafe { self.get().as_ref_unchecked() }
2499 }
2500
2501 / Get an exclusive reference to the value within the `UnsafeCell`.
2502 /
2503 / # Safety
2504 /
2505 / - It is Undefined Behavior to call this while any other
2506 / reference(s) to the wrapped value are alive.
2507 / - Mutating the wrapped value through other means while the
2508 / returned reference is alive is Undefined Behavior.
2509 /
2510 / # Examples
2511 /
2512 / ```
2513 / #![feature(unsafe_cell_access)]
2514 / use std::cell::UnsafeCell;
2515 /
2516 / let uc = UnsafeCell::new(5);
2517 /
2518 / unsafe { *uc.as_mut_unchecked() += 1; }
2519 / assert_eq!(uc.into_inner(), 6);
2520 / ```
2521 #[inline]
2522 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2523 #[allow(clippy::mut_from_ref)]
2524 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2525 / SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2526 unsafe { self.get().as_mut_unchecked() }
2527 }
2528}
2529
2530#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2531#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2532impl<T: [const] Default> const Default for UnsafeCell<T> {
2533 / Creates an `UnsafeCell`, with the `Default` value for T.
2534 fn default() -> UnsafeCell<T> {
2535 UnsafeCell::new(Default::default())
2536 }
2537}
2538
2539#[stable(feature = "cell_from", since = "1.12.0")]
2540#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2541impl<T> const From<T> for UnsafeCell<T> {
2542 / Creates a new `UnsafeCell<T>` containing the given value.
2543 fn from(t: T) -> UnsafeCell<T> {
2544 UnsafeCell::new(t)
2545 }
2546}
2547
2548#[unstable(feature = "coerce_unsized", issue = "18598")]
2549impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2550
2551/ Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2552/ and become dyn-compatible method receivers.
2553/ Note that currently `UnsafeCell` itself cannot be a method receiver
2554/ because it does not implement Deref.
2555/ In other words:
2556/ `self: UnsafeCell<&Self>` won't work
2557/ `self: UnsafeCellWrapper<Self>` becomes possible
2558#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2559impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2560
2561/ [`UnsafeCell`], but [`Sync`].
2562/
2563/ This is just an `UnsafeCell`, except it implements `Sync`
2564/ if `T` implements `Sync`.
2565/
2566/ `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2567/ You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2568/ shared between threads, if that's intentional.
2569/ Providing proper synchronization is still the task of the user,
2570/ making this type just as unsafe to use.
2571/
2572/ See [`UnsafeCell`] for details.
2573#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2574#[repr(transparent)]
2575#[rustc_diagnostic_item = "SyncUnsafeCell"]
2576#[rustc_pub_transparent]
2577pub struct SyncUnsafeCell<T: ?Sized> {
2578 value: UnsafeCell<T>,
2579}
2580
2581#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2582unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2583
2584#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2585impl<T> SyncUnsafeCell<T> {
2586 / Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2587 #[inline]
2588 pub const fn new(value: T) -> Self {
2589 Self { value: UnsafeCell { value } }
2590 }
2591
2592 / Unwraps the value, consuming the cell.
2593 #[inline]
2594 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2595 pub const fn into_inner(self) -> T {
2596 self.value.into_inner()
2597 }
2598}
2599
2600#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2601impl<T: ?Sized> SyncUnsafeCell<T> {
2602 / Gets a mutable pointer to the wrapped value.
2603 /
2604 / This can be cast to a pointer of any kind.
2605 / Ensure that the access is unique (no active references, mutable or not)
2606 / when casting to `&mut T`, and ensure that there are no mutations
2607 / or mutable aliases going on when casting to `&T`
2608 #[inline]
2609 #[rustc_as_ptr]
2610 #[rustc_never_returns_null_ptr]
2611 pub const fn get(&self) -> *mut T {
2612 self.value.get()
2613 }
2614
2615 / Returns a mutable reference to the underlying data.
2616 /
2617 / This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2618 / guarantees that we possess the only reference.
2619 #[inline]
2620 pub const fn get_mut(&mut self) -> &mut T {
2621 self.value.get_mut()
2622 }
2623
2624 / Gets a mutable pointer to the wrapped value.
2625 /
2626 / See [`UnsafeCell::get`] for details.
2627 #[inline]
2628 pub const fn raw_get(this: *const Self) -> *mut T {
2629 / We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2630 / of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2631 / See UnsafeCell::raw_get.
2632 this as *const T as *mut T
2633 }
2634}
2635
2636#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2637#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2638impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2639 / Creates an `SyncUnsafeCell`, with the `Default` value for T.
2640 fn default() -> SyncUnsafeCell<T> {
2641 SyncUnsafeCell::new(Default::default())
2642 }
2643}
2644
2645#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2646#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2647impl<T> const From<T> for SyncUnsafeCell<T> {
2648 / Creates a new `SyncUnsafeCell<T>` containing the given value.
2649 fn from(t: T) -> SyncUnsafeCell<T> {
2650 SyncUnsafeCell::new(t)
2651 }
2652}
2653
2654#[unstable(feature = "coerce_unsized", issue = "18598")]
2655/#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2656impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2657
2658/ Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2659/ and become dyn-compatible method receivers.
2660/ Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2661/ because it does not implement Deref.
2662/ In other words:
2663/ `self: SyncUnsafeCell<&Self>` won't work
2664/ `self: SyncUnsafeCellWrapper<Self>` becomes possible
2665#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2666/#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2667impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2668
2669#[allow(unused)]
2670fn assert_coerce_unsized(
2671 a: UnsafeCell<&i32>,
2672 b: SyncUnsafeCell<&i32>,
2673 c: Cell<&i32>,
2674 d: RefCell<&i32>,
2675) {
2676 let _: UnsafeCell<&dyn Send> = a;
2677 let _: SyncUnsafeCell<&dyn Send> = b;
2678 let _: Cell<&dyn Send> = c;
2679 let _: RefCell<&dyn Send> = d;
2680}
2681
2682#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2683unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2684
2685#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2686unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2687
2688#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2689unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2690
2691#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2692unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2693
2694#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2695unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2696
2697#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2698unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}