Jump to content

Laser

Page semi-protected
From Wikipedia, the free encyclopedia

A telescope emitting four orange laser beams
A telescope in the Very Large Telescope system producing four orange laser guide stars

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser originated as an acronym for light amplification by stimulated emission of radiation.[1][2] The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow and the optical amplifier patented by Gordon Gould.[3][4][5]

A laser differs from other sources of light in that it emits light that is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling uses such as optical communication,[6] laser cutting, and lithography. It also allows a laser beam to stay narrow over great distances (collimation), used in laser pointers, lidar, and free-space optical communication. Lasers can also have high temporal coherence, which permits them to emit light with a very narrow frequency spectrum. Temporal coherence can also be used to produce ultrashort pulses of light with a broad spectrum but durations as short as an attosecond.[7]

Lasers are used in fiber-optic and free-space optical communications, optical disc drives, laser printers, barcode scanners, semiconductor chip manufacturing (photolithography, etching), laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. The laser is regarded as one of the greatest inventions of the 20th century.[8][9]

Terminology

The first device using amplification by stimulated emission operated at microwave frequencies, and was called a maser, for "microwave amplification by stimulated emission of radiation".[10] When similar optical devices were developed they were first called optical masers, until "microwave" was replaced by "light" in the acronym, to become laser.[11][12][13]

Today, all such devices operating at frequencies higher than microwaves (approximately above 300 GHz) are called lasers (e.g. infrared lasers, ultraviolet lasers, X-ray lasers, gamma-ray lasers), whereas devices operating at microwave or lower radio frequencies are called masers.[14][15]

The back-formed verb "lasing".[17] The terms laser and maser are also used for naturally occurring coherent emissions, as in astrophysical maser and atom laser.[18][19]

A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym.[20] It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct.[19][21] Some sources[22][23] refer to the word laser as an anacronym, meaning an acronym so widely used as a noun that it is no longer considered an abbreviation.[24]

Fundamentals

A laser normally produces a very narrow beam of light in a single wavelength, in this case, green.

Photons, the quanta of electromagnetic radiation, are released and absorbed from energy levels in atoms and molecules. In a lightbulb or a star, the energy is emitted from many different levels giving photons with a broad range of energies. This process is called thermal radiation.[25]: 575 

The underlying physical process creating photons in a laser is the same as in thermal radiation, but the actual emission is not the result of random thermal processes. Instead, the release of a photon is triggered by the nearby passage of another photon. This is called stimulated emission. For this process to work, the passing photon must be similar in energy, and thus wavelength, to the one that could be released by the atom or molecule, and the atom or molecule must be in the suitable excited state.[25]: 580 

The photon that is emitted by stimulated emission is identical to the photon that triggered its emission, and both photons can go on to trigger stimulated emission in other atoms, creating the possibility of a chain reaction. For this to happen, many of the atoms or molecules must be in the proper excited state so that the photons can trigger them. In most materials, atoms or molecules drop out of excited states fairly rapidly, making it difficult or impossible to produce a chain reaction. The materials chosen for lasers are the ones that have metastable states, which stay excited for a relatively long time. In laser physics, such a material is called an active laser medium. Combined with an energy source that continues to "pump" energy into the material, it is possible to have enough atoms or molecules in an excited state for a chain reaction to develop.

Lasers are distinguished from other light sources by their coherence. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is diffraction-limited. Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length) along the beam.[26][page needed] A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length.

Lasers are characterized according to their wavelength in a vacuum. Most "single wavelength" lasers produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity, some lasers emit a broad spectrum of light or emit different wavelengths of light simultaneously. Certain lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit. All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.

Design