Role models are important.
Tip
|
You can find a beautiful version of this guide with much improved navigation at https://rubystyle.guide. |
This Ruby style guide recommends best practices so that real-world Ruby programmers can write code that can be maintained by other real-world Ruby programmers. A style guide that reflects real-world usage gets used, while a style guide that holds to an ideal that has been rejected by the people it is supposed to help risks not getting used at all - no matter how good it is.
The guide is separated into several sections of related guidelines. We’ve tried to add the rationale behind the guidelines (if it’s omitted we’ve assumed it’s pretty obvious).
We didn’t come up with all the guidelines out of nowhere - they are mostly based on the professional experience of the editors, feedback and suggestions from members of the Ruby community and various highly regarded Ruby programming resources, such as "The Ruby Programming Language".
This style guide evolves over time as additional conventions are identified and past conventions are rendered obsolete by changes in Ruby itself.
You can generate a PDF copy of this guide using AsciiDoctor using the following commands:
# Generates README.pdf
asciidoctor-pdf -a allow-uri-read README.adoc
# Generates README.html
asciidoctor README.adoc
Tip
|
Install the gem install rouge |
Tip
|
If you’re into Rails or RSpec you might want to check out the complementary RSpec Style Guide. |
Tip
|
RuboCop is a static code analyzer (linter) and formatter, based on this style guide. |
Programs must be written for people to read, and only incidentally for machines to execute.
Structure and Interpretation of Computer Programs
It’s common knowledge that code is read much more often than it is written. The guidelines provided here are intended to improve the readability of code and make it consistent across the wide spectrum of Ruby code. They are also meant to reflect real-world usage of Ruby instead of a random ideal. When we had to choose between a very established practice and a subjectively better alternative we’ve opted to recommend the established practice.[1]
There are some areas in which there is no clear consensus in the Ruby community regarding a particular style (like string literal quoting, spacing inside hash literals, dot position in multi-line method chaining, etc.). In such scenarios all popular styles are acknowledged and it’s up to you to pick one and apply it consistently.
Ruby had existed for over 15 years by the time the guide was created, and the language’s flexibility and lack of common standards have contributed to the creation of numerous styles for just about everything. Rallying people around the cause of community standards took a lot of time and energy, and we still have a lot of ground to cover.
Ruby is famously optimized for programmer happiness. We’d like to believe that this guide is going to help you optimize for maximum programmer happiness.
A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines.
A style guide is about consistency. Consistency with this style guide is important. Consistency within a project is more important. Consistency within one class or method is the most important.
However, know when to be inconsistent — sometimes style guide recommendations just aren’t applicable. When in doubt, use your best judgment. Look at other examples and decide what looks best. And don’t hesitate to ask!
In particular: do not break backwards compatibility just to comply with this guide!
Some other good reasons to ignore a particular guideline:
-
When applying the guideline would make the code less readable, even for someone who is used to reading code that follows this style guide.
-
To be consistent with surrounding code that also breaks it (maybe for historic reasons) — although this is also an opportunity to clean up someone else’s mess (in true XP style).
-
Because the code in question predates the introduction of the guideline and there is no other reason to be modifying that code.
-
When the code needs to remain compatible with older versions of Ruby that don’t support the feature recommended by the style guide.
Translations of the guide are available in the following languages:
Note
|
These translations are not maintained by our editor team, so their quality and level of completeness may vary. The translated versions of the guide often lag behind the upstream English version. |
Nearly everybody is convinced that every style but their own is ugly and unreadable. Leave out the "but their own" and they’re probably right…
Use UTF-8
as the source file encoding.
Tip
|
UTF-8 has been the default source file encoding since Ruby 2.0. |
Use only spaces for indentation. No hard tabs.
Use two spaces per indentation level (aka soft tabs).
# bad - four spaces
def some_method
do_something
end
# good
def some_method
do_something
end
Limit lines to 80 characters.
Tip
|
Most editors and IDEs have configuration options to help you with that. They would typically highlight lines that exceed the length limit. |
A lot of people these days feel that a maximum line length of 80 characters is just a remnant of the past and makes little sense today. After all - modern displays can easily fit 200+ characters on a single line. Still, there are some important benefits to be gained from sticking to shorter lines of code.
First, and foremost - numerous studies have shown that humans read much faster vertically and very long lines of text impede the reading process. As noted earlier, one of the guiding principles of this style guide is to optimize the code we write for human consumption.
Additionally, limiting the required editor window width makes it possible to have several files open side-by-side, and works well when using code review tools that present the two versions in adjacent columns.
The default wrapping in most tools disrupts the visual structure of the code, making it more difficult to understand. The limits are chosen to avoid wrapping in editors with the window width set to 80, even if the tool places a marker glyph in the final column when wrapping lines. Some web based tools may not offer dynamic line wrapping at all.
Some teams strongly prefer a longer line length. For code maintained exclusively or primarily by a team that can reach agreement on this issue, it is okay to increase the line length limit up to 100 characters, or all the way up to 120 characters. Please, restrain the urge to go beyond 120 characters.
Avoid trailing whitespace.
Tip
|
Most editors and IDEs have configuration options to visualize trailing whitespace and to remove it automatically on save. |
Use Unix-style line endings.[2]
Tip
|
If you’re using Git you might want to add the following configuration setting to protect your project from Windows line endings creeping in: $ git config --global core.autocrlf true |
End each file with a newline.
Tip
|
This should be done via editor configuration, not manually. |
Don’t use ;
to terminate statements and expressions.
# bad
puts 'foobar'; # superfluous semicolon
# good
puts 'foobar'
Use one expression per line.
# bad
puts 'foo'; puts 'bar' # two expressions on the same line
# good
puts 'foo'
puts 'bar'
puts 'foo', 'bar' # this applies to puts in particular
Avoid dot where not required for operator method calls.
# bad
num.+ 42
# good
num + 42
Use spaces around operators, after commas, colons and semicolons. Whitespace might be (mostly) irrelevant to the Ruby interpreter, but its proper use is the key to writing easily readable code.
# bad
sum=1+2
a,b=1,2
class FooError<StandardError;end
# good
sum = 1 + 2
a, b = 1, 2
class FooError < StandardError; end
There are a few exceptions:
-
Exponent operator:
# bad
e = M * c ** 2
# good
e = M * c**2
-
Slash in rational literals:
# bad
o_scale = 1 / 48r
# good
o_scale = 1/48r
-
Safe navigation operator:
# bad
foo &. bar
foo &.bar
foo&. bar
# good
foo&.bar
Avoid long chains of &.
. The longer the chain is, the harder it becomes to track what
on it could be returning a nil
. Replace with .
and an explicit check.
E.g. if users are guaranteed to have an address and addresses are guaranteed to have a zip code:
# bad
user&.address&.zip&.upcase
# good
user && user.address.zip.upcase
If such a change introduces excessive conditional logic, consider other approaches, such as delegation:
# bad
user && user.address && user.address.zip && user.address.zip.upcase
# good
class User
def zip
address&.zip
end
end
user&.zip&.upcase
No spaces after (
, [
or before ]
, )
.
Use spaces around {
and before }
.
# bad
some( arg ).other
[ 1, 2, 3 ].each{|e| puts e}
# good
some(arg).other
[1, 2, 3].each { |e| puts e }
{
and }
deserve a bit of clarification, since they are used for block and hash literals, as well as string interpolation.
For hash literals two styles are considered acceptable. The first variant is slightly more readable (and arguably more popular in the Ruby community in general). The second variant has the advantage of adding visual difference between block and hash literals. Whichever one you pick - apply it consistently.
# good - space after { and before }
{ one: 1, two: 2 }
# good - no space after { and before }
{one: 1, two: 2}
With interpolated expressions, there should be no padded-spacing inside the braces.
# bad
"From: #{ user.first_name }, #{ user.last_name }"
# good
"From: #{user.first_name}, #{user.last_name}"
No space after !
.
# bad
! something
# good
!something
No space inside range literals.
# bad
1 .. 3
'a' ... 'z'
# good
1..3
'a'...'z'
Indent when
as deep as case
.
# bad
case
when song.name == 'Misty'
puts 'Not again!'
when song.duration > 120
puts 'Too long!'
when Time.now.hour > 21
puts "It's too late"
else
song.play
end
# good
case
when song.name == 'Misty'
puts 'Not again!'
when song.duration > 120
puts 'Too long!'
when Time.now.hour > 21
puts "It's too late"
else
song.play
end
This is the style established in both "The Ruby Programming Language" and "Programming Ruby".
Historically it is derived from the fact that case
and switch
statements are not blocks, hence should not be indented, and the when
and else
keywords are labels (compiled in the C language, they are literally labels for JMP
calls).
When assigning the result of a conditional expression to a variable, preserve the usual alignment of its branches.
# bad - pretty convoluted
kind = case year
when 1850..1889 then 'Blues'
when 1890..1909 then 'Ragtime'
when 1910..1929 then 'New Orleans Jazz'
when 1930..1939 then 'Swing'
when 1940..1950 then 'Bebop'
else 'Jazz'
end
result = if some_cond
calc_something
else
calc_something_else
end
# good - it's apparent what's going on
kind = case year
when 1850..1889 then 'Blues'
when 1890..1909 then 'Ragtime'
when 1910..1929 then 'New Orleans Jazz'
when 1930..1939 then 'Swing'
when 1940..1950 then 'Bebop'
else 'Jazz'
end
result = if some_cond
calc_something
else
calc_something_else
end
# good (and a bit more width efficient)
kind =
case year
when 1850..1889 then 'Blues'
when 1890..1909 then 'Ragtime'
when 1910..1929 then 'New Orleans Jazz'
when 1930..1939 then 'Swing'
when 1940..1950 then 'Bebop'
else 'Jazz'
end
result =
if some_cond
calc_something
else
calc_something_else
end
Use empty lines between method definitions and also to break up methods into logical paragraphs internally.
# bad
def some_method
data = initialize(options)
data.manipulate!
data.result
end
def some_other_method
result
end
# good
def some_method
data = initialize(options)
data.manipulate!
data.result
end
def some_other_method
result
end
Don’t use several empty lines in a row.
# bad - It has two empty lines.
some_method
some_method
# good
some_method
some_method
Use empty lines around attribute accessor.
# bad
class Foo
attr_reader :foo
def foo
# do something...
end
end
# good
class Foo
attr_reader :foo
def foo
# do something...
end
end
Use empty lines around access modifier.
# bad
class Foo
def bar; end
private
def baz; end
end
# good
class Foo
def bar; end
private
def baz; end
end
Don’t use empty lines around method, class, module, block bodies.
# bad
class Foo
def foo
begin
do_something do
something
end
rescue
something
end
true
end
end
# good
class Foo
def foo
begin
do_something do
something
end
rescue
something
end
end
end
Avoid comma after the last parameter in a method call, especially when the parameters are not on separate lines.
# bad - easier to move/add/remove parameters, but still not preferred
some_method(
size,
count,
color,
)
# bad
some_method(size, count, color, )
# good
some_method(size, count, color)
Use spaces around the =
operator when assigning default values to method parameters:
# bad
def some_method(arg1=:default, arg2=nil, arg3=[])
# do something...
end
# good
def some_method(arg1 = :default, arg2 = nil, arg3 = [])
# do something...
end
While several Ruby books suggest the first style, the second is much more prominent in practice (and arguably a bit more readable).
Avoid line continuation with \
where not required.
In practice, avoid using line continuations for anything but string concatenation.
# bad (\ is not needed here)
result = 1 - \
2
# bad (\ is required, but still ugly as hell)
result = 1 \
- 2
# good
result = 1 -
2
long_string = 'First part of the long string' \
' and second part of the long string'
Adopt a consistent multi-line method chaining style.
There are two popular styles in the Ruby community, both of which are considered good - leading .
and trailing .
.
When continuing a chained method call on another line, keep the .
on the second line.
# bad - need to consult first line to understand second line
one.two.three.
four
# good - it's immediately clear what's going on the second line
one.two.three
.four
When continuing a chained method call on another line, include the .
on the first line to indicate that the expression continues.
# bad - need to read ahead to the second line to know that the chain continues
one.two.three
.four
# good - it's immediately clear that the expression continues beyond the first line
one.two.three.
four
A discussion on the merits of both alternative styles can be found here.
Align the arguments of a method call if they span more than one line. When aligning arguments is not appropriate due to line-length constraints, single indent for the lines after the first is also acceptable.
# starting point (line is too long)
def send_mail(source)
Mailer.deliver(to: '[email protected]', from: '[email protected]', subject: 'Important message', body: source.text)
end
# bad (double indent)
def send_mail(source)
Mailer.deliver(
to: '[email protected]',
from: '[email protected]',
subject: 'Important message',
body: source.text)
end
# good
def send_mail(source)
Mailer.deliver(to: '[email protected]',
from: '[email protected]',
subject: 'Important message',
body: source.text)
end
# good (normal indent)
def send_mail(source)
Mailer.deliver(
to: '[email protected]',
from: '[email protected]',
subject: 'Important message',
body: source.text
)
end
Important
|
As of Ruby 2.7 braces around an options hash are no longer optional. |
Omit the outer braces around an implicit options hash.
# bad
user.set({ name: 'John', age: 45, permissions: { read: true })
# good
user.set(name: 'John', age: 45, permissions: { read: true })
Omit both the outer braces and parentheses for methods that are part of an internal DSL (e.g., Rake, Rails, RSpec).
class Person < ActiveRecord::Base
# bad
attr_reader(:name, :age)
# good
attr_reader :name, :age
# bad
validates(:name, { presence: true, length: { within: 1..10 })
# good
validates :name, presence: true, length: { within: 1..10 }
end
Do not put a space between a method name and the opening parenthesis.
# bad
puts (x + y)
# good
puts(x + y)
Do not put a space between a receiver name and the opening brackets.
# bad
collection [index_or_key]
# good
collection[index_or_key]
Align the elements of array literals spanning multiple lines.
# bad - single indent
menu_item = %w[Spam Spam
Baked beans Spam]
# good
menu_item = %w[
Spam Spam
Baked beans Spam
]
# good
menu_item =
%w[Spam Spam
Baked beans Spam]
The only real difficulties in programming are cache invalidation and naming things.
Name identifiers in English.
# bad - identifier is a Bulgarian word, using non-ascii (Cyrillic) characters
заплата = 1_000
# bad - identifier is a Bulgarian word, written with Latin letters (instead of Cyrillic)
zaplata = 1_000
# good
salary = 1_000
Use snake_case
for symbols, methods and variables.
# bad
:'some symbol'
:SomeSymbol
:someSymbol
someVar = 5
def someMethod
# some code
end
def SomeMethod
# some code
end
# good
:some_symbol
some_var = 5
def some_method
# some code
end
Do not separate numbers from letters on symbols, methods and variables.
# bad
:some_sym_1
some_var_1 = 1
var_10 = 10
def some_method_1
# some code
end
# good
:some_sym1
some_var1 = 1
var10 = 10
def some_method1
# some code
end
Note
|
CapitalCase is also known as UpperCamelCase , CapitalWords
and PascalCase .
|
Use CapitalCase
for classes and modules.
(Keep acronyms like HTTP, RFC, XML uppercase).
# bad
class Someclass
# some code
end
class Some_Class
# some code
end
class SomeXml
# some code
end
class XmlSomething
# some code
end
# good
class SomeClass
# some code
end
class SomeXML
# some code
end
class XMLSomething
# some code
end
Use snake_case
for naming files, e.g. hello_world.rb
.
Use snake_case
for naming directories, e.g. lib/hello_world/hello_world.rb
.
Aim to have just a single class/module per source file.
Name the file name as the class/module, but replacing CapitalCase
with snake_case
.
Use SCREAMING_SNAKE_CASE
for other constants (those that don’t refer to classes and modules).
# bad
SomeConst = 5
# good
SOME_CONST = 5
The names of predicate methods (methods that return a boolean value) should end in a question mark (i.e. Array#empty?
).
Methods that don’t return a boolean, shouldn’t end in a question mark.
# bad
def even(value)
end
# good
def even?(value)
end
Avoid prefixing predicate methods with the auxiliary verbs such as is
, does
, or can
.
These words are redundant and inconsistent with the style of boolean methods in the Ruby core library, such as empty?
and include?
.
# bad
class Person
def is_tall?
true
end
def can_play_basketball?
false
end
def does_like_candy?
true
end
end
# good
class Person
def tall?
true
end
def basketball_player?
false
end
def likes_candy?
true
end
end
The names of potentially dangerous methods (i.e. methods that modify self
or the arguments, exit!
(doesn’t run the finalizers like exit
does), etc) should end with an exclamation mark if there exists a safe version of that dangerous method.
# bad - there is no matching 'safe' method
class Person
def update!
end
end
# good
class Person
def update
end
end
# good
class Person
def update!
end
def update
end
end
Define the non-bang (safe) method in terms of the bang (dangerous) one if possible.
class Array
def flatten_once!
res = []
each do |e|
[*e].each { |f| res << f }
end
replace(res)
end
def flatten_once
dup.flatten_once!
end
end
Prefix with _
unused block parameters and local variables.
It’s also acceptable to use just _
(although it’s a bit less descriptive).
This convention is recognized by the Ruby interpreter and tools like RuboCop will suppress their unused variable warnings.
# bad
result = hash.map { |k, v| v + 1 }
def something(x)
unused_var, used_var = something_else(x)
# some code
end
# good
result = hash.map { |_k, v| v + 1 }
def something(x)
_unused_var, used_var = something_else(x)
# some code
end
# good
result = hash.map { |_, v| v + 1 }
def something(x)
_, used_var = something_else(x)
# some code
end
When defining binary operators and operator-alike methods, name the parameter other
for operators with "symmetrical" semantics of operands.
Symmetrical semantics means both sides of the operator are typically of the same or coercible types.
Operators and operator-alike methods with symmetrical semantics (the parameter should be named other
): `, `-`, `+
, /
, %
, *
, ==
, >
, <
, |
, &
, ^
, eql?
, equal?
.
Operators with non-symmetrical semantics (the parameter should not be named other
): <<
, []
(collection/item relations between operands), ===
(pattern/matchable relations).
Note that the rule should be followed only if both sides of the operator have the same semantics.
Prominent exception in Ruby core is, for example, Array#*(int)
.
# good
def +(other)
# body omitted
end
# bad
def <<(other)
@internal << other
end
# good
def <<(item)
@internal << item
end
# bad
# Returns some string multiplied `other` times
def *(other)
# body omitted
end
# good
# Returns some string multiplied `num` times
def *(num)
# body omitted
end
Do not use for
, unless you know exactly why.
Most of the time iterators should be used instead.
for
is implemented in terms of each
(so you’re adding a level of indirection), but with a twist - for
doesn’t introduce a new scope (unlike each
) and variables defined in its block will be visible outside it.
arr = [1, 2, 3]
# bad
for elem in arr do
puts elem
end
# note that elem is accessible outside of the for loop
elem # => 3
# good
arr.each { |elem| puts elem }
# elem is not accessible outside each block
elem # => NameError: undefined local variable or method `elem'
Do not use then
for multi-line if
/unless
/when
/in
.
# bad
if some_condition then
# body omitted
end
# bad
case foo
when bar then
# body omitted
end
# bad
case expression
in pattern then
# body omitted
end
# good
if some_condition
# body omitted
end
# good
case foo
when bar
# body omitted
end
# good
case expression
in pattern
# body omitted
end
Always put the condition on the same line as the if
/unless
in a multi-line conditional.
# bad
if
some_condition
do_something
do_something_else
end
# good
if some_condition
do_something
do_something_else
end
Prefer the ternary operator(?:
) over if/then/else/end
constructs.
It’s more common and obviously more concise.
# bad
result = if some_condition then something else something_else end
# good
result = some_condition ? something : something_else
Use one expression per branch in a ternary operator.
This also means that ternary operators must not be nested.
Prefer if/else
constructs in these cases.
# bad
some_condition ? (nested_condition ? nested_something : nested_something_else) : something_else
# good
if some_condition
nested_condition ? nested_something : nested_something_else
else
something_else
end
Do not use if x; …
. Use the ternary operator instead.
# bad
result = if some_condition; something else something_else end
# good
result = some_condition ? something : something_else
Prefer case
over if-elsif
when compared value is the same in each clause.
# bad
if status == :active
perform_action
elsif status == :inactive || status == :hibernating
check_timeout
else
final_action
end
# good
case status
when :active
perform_action
when :inactive, :hibernating
check_timeout
else
final_action
end
Leverage the fact that if
and case
are expressions which return a result.
# bad
if condition
result = x
else
result = y
end
# good
result =
if condition
x
else
y
end
Use when x then …
for one-line cases.
Note
|
The alternative syntax when x: … has been removed as of Ruby 1.9.
|
Do not use when x; …
. See the previous rule.
Do not use in pattern; …
. Use in pattern then …
for one-line in
pattern branches.
# bad
case expression
in pattern; do_something
end
# good
case expression
in pattern then do_something
end
Use !
instead of not
.
# bad - parentheses are required because of op precedence
x = (not something)
# good
x = !something
Avoid unnecessary uses of !!
!!
converts a value to boolean, but you don’t need this explicit conversion in the condition of a control expression; using it only obscures your intention.
Consider using it only when there is a valid reason to restrict the result true
or false
. Examples include outputting to a particular format or API like JSON, or as the return value of a predicate?
method. In these cases, also consider doing a nil check instead: !something.nil?
.
# bad
x = 'test'
# obscure nil check
if !!x
# body omitted
end
# good
x = 'test'
if x
# body omitted
end
# good
def named?
!name.nil?
end
# good
def banned?
!!banned_until&.future?
end
Do not use and
and or
in boolean context - and
and or
are control flow
operators and should be used as such. They have very low precedence, and can be
used as a short form of specifying flow sequences like "evaluate expression 1,
and only if it is not successful (returned nil
), evaluate expression 2". This
is especially useful for raising errors or early return without breaking the
reading flow.
# good: and/or for control flow
x = extract_arguments or raise ArgumentError, "Not enough arguments!"
user.suspended? and return :denied
# bad
# and/or in conditions (their precedence is low, might produce unexpected result)
if got_needed_arguments and arguments_valid
# ...body omitted
end
# in logical expression calculation
ok = got_needed_arguments and arguments_valid
# good
# &&/|| in conditions
if got_needed_arguments && arguments_valid
# ...body omitted
end
# in logical expression calculation
ok = got_needed_arguments && arguments_valid
# bad
# &&/|| for control flow (can lead to very surprising results)
x = extract_arguments || raise(ArgumentError, "Not enough arguments!")
Avoid several control flow operators in one expression, as that quickly becomes confusing:
# bad
# Did author mean conditional return because `#log` could result in `nil`?
# ...or was it just to have a smart one-liner?
x = extract_arguments and log("extracted") and return
# good
# If the intention was conditional return
x = extract_arguments
if x
return if log("extracted")
end
# If the intention was just "log, then return"
x = extract_arguments
if x
log("extracted")
return
end
Note
|
Whether organizing control flow with and and or is a good idea has been a controversial topic in the community for a long time. But if you do, prefer these operators over && /|| . As the different operators are meant to have different semantics that makes it easier to reason whether you’re dealing with a logical expression (that will get reduced to a boolean value) or with flow of control.
|
and
and or
as logical operators a bad idea?Simply put - because they add some cognitive overhead, as they don’t behave like similarly named logical operators in other languages.
First of all, and
and or
operators have lower precedence than the =
operator, whereas the &&
and ||
operators have higher precedence than the =
operator, based on order of operations.
foo = true and false # results in foo being equal to true. Equivalent to (foo = true) and false
bar = false or true # results in bar being equal to false. Equivalent to (bar = false) or true
Also &&
has higher precedence than ||
, where as and
and or
have the same one. Funny enough, even though and
and or
were inspired by Perl, they don’t have different precedence in Perl.
true or true and false # => false (it's effectively (true or true) and false)
true || true && false # => true (it's effectively true || (true && false)
false or true and false # => false (it's effectively (false or true) and false)
false || true && false # => false (it's effectively false || (true && false))
Avoid multi-line ?:
(the ternary operator); use if
/unless
instead.
Prefer modifier if
/unless
usage when you have a single-line body.
Another good alternative is the usage of control flow and
/or
.
# bad
if some_condition
do_something
end
# good
do_something if some_condition
# another good option
some_condition and do_something
Avoid modifier if
/unless
usage at the end of a non-trivial multi-line block.
# bad
10.times do
# multi-line body omitted
end if some_condition
# good
if some_condition
10.times do
# multi-line body omitted
end
end
Avoid nested modifier if
/unless
/while
/until
usage.
Prefer &&
/||
if appropriate.
# bad
do_something if other_condition if some_condition
# good
do_something if some_condition && other_condition
Prefer unless
over if
for negative conditions (or control flow ||
).
# bad
do_something if !some_condition
# bad
do_something if not some_condition
# good
do_something unless some_condition
# another good option
some_condition || do_something
Do not use unless
with else
.
Rewrite these with the positive case first.
# bad
unless success?
puts 'failure'
else
puts 'success'
end
# good
if success?
puts 'success'
else
puts 'failure'
end
Don’t use parentheses around the condition of a control expression.
# bad
if (x > 10)
# body omitted
end
# good
if x > 10
# body omitted
end
Note
|
There is an exception to this rule, namely safe assignment in condition. |
Do not use while/until condition do
for multi-line while/until
.
# bad
while x > 5 do
# body omitted
end
until x > 5 do
# body omitted
end
# good
while x > 5
# body omitted
end
until x > 5
# body omitted
end
Prefer modifier while/until
usage when you have a single-line body.
# bad
while some_condition
do_something
end
# good
do_something while some_condition
Prefer until
over while
for negative conditions.
# bad
do_something while !some_condition
# good
do_something until some_condition
Use Kernel#loop
instead of while
/until
when you need an infinite loop.
# bad
while true
do_something
end
until false
do_something
end
# good
loop do
do_something
end
Use Kernel#loop
with break
rather than begin/end/until
or begin/end/while
for post-loop tests.
# bad
begin
puts val
val += 1
end while val < 0
# good
loop do
puts val
val += 1
break unless val < 0
end
Avoid return
where not required for flow of control.
# bad
def some_method(some_arr)
return some_arr.size
end
# good
def some_method(some_arr)
some_arr.size
end
Avoid self
where not required.
(It is only required when calling a self
write accessor, methods named after reserved words, or overloadable operators.)
# bad
def ready?
if self.last_reviewed_at > self.last_updated_at
self.worker.update(self.content, self.options)
self.status = :in_progress
end
self.status == :verified
end
# good
def ready?
if last_reviewed_at > last_updated_at
worker.update(content, options)
self.status = :in_progress
end
status == :verified
end
As a corollary, avoid shadowing methods with local variables unless they are both equivalent.
class Foo
attr_accessor :options
# ok
def initialize(options)
self.options = options
# both options and self.options are equivalent here
end
# bad
def do_something(options = {})
unless options[:when] == :later
output(self.options[:message])
end
end
# good
def do_something(params = {})
unless params[:when] == :later
output(options[:message])
end
end
end
Don’t use the return value of =
(an assignment) in conditional expressions unless the assignment is wrapped in parentheses.
This is a fairly popular idiom among Rubyists that’s sometimes referred to as safe assignment in condition.
# bad (+ a warning)
if v = array.grep(/foo/)
do_something(v)
# some code
end
# good (MRI would still complain, but RuboCop won't)
if (v = array.grep(/foo/)
do_something(v)
# some code
end
# good
v = array.grep(/foo/)
if v
do_something(v)
# some code
end
Avoid the use of BEGIN
blocks.
Do not use END
blocks. Use Kernel#at_exit
instead.
# bad
END { puts 'Goodbye!' }
# good
at_exit { puts 'Goodbye!' }
Avoid use of nested conditionals for flow of control.
Prefer a guard clause when you can assert invalid data. A guard clause is a conditional statement at the top of a function that bails out as soon as it can.
# bad
def compute_thing(thing)
if thing[:foo]
update_with_bar(thing[:foo])
if thing[:foo][:bar]
partial_compute(thing)
else
re_compute(thing)
end
end
end
# good
def compute_thing(thing)
return unless thing[:foo]
update_with_bar(thing[:foo])
return re_compute(thing) unless thing[:foo][:bar]
partial_compute(thing)
end
Prefer next
in loops instead of conditional blocks.
# bad
[0, 1, 2, 3].each do |item|
if item > 1
puts item
end
end
# good
[0, 1, 2, 3].each do |item|
next unless item > 1
puts item
end
Prefer raise
over fail
for exceptions.
# bad
fail SomeException, 'message'
# good
raise SomeException, 'message'
Don’t specify RuntimeError
explicitly in the two argument version of raise
.
# bad
raise RuntimeError, 'message'
# good - signals a RuntimeError by default
raise 'message'
Prefer supplying an exception class and a message as two separate arguments to raise
, instead of an exception instance.
# bad
raise SomeException.new('message')
# Note that there is no way to do `raise SomeException.new('message'), backtrace`.
# good
raise SomeException, 'message'
# Consistent with `raise SomeException, 'message', backtrace`.
Do not return from an ensure
block.
If you explicitly return from a method inside an ensure
block, the return will take precedence over any exception being raised, and the method will return as if no exception had been raised at all.
In effect, the exception will be silently thrown away.
# bad
def foo
raise
ensure
return 'very bad idea'
end
Use implicit begin blocks where possible.
# bad
def foo
begin
# main logic goes here
rescue
# failure handling goes here
end
end
# good
def foo
# main logic goes here
rescue
# failure handling goes here
end
Mitigate the proliferation of begin
blocks by using contingency methods (a term coined by Avdi Grimm).
# bad
begin
something_that_might_fail
rescue IOError
# handle IOError
end
begin
something_else_that_might_fail
rescue IOError
# handle IOError
end
# good
def with_io_error_handling
yield
rescue IOError
# handle IOError
end
with_io_error_handling { something_that_might_fail }
with_io_error_handling { something_else_that_might_fail }
Don’t suppress exceptions.
# bad
begin
do_something # an exception occurs here
rescue SomeError
end
# good
begin
do_something # an exception occurs here
rescue SomeError
handle_exception
end
# good
begin
do_something # an exception occurs here
rescue SomeError
# Notes on why exception handling is not performed
end
# good
do_something rescue nil
Avoid using rescue
in its modifier form.
# bad - this catches exceptions of StandardError class and its descendant classes
read_file rescue handle_error($!)
# good - this catches only the exceptions of Errno::ENOENT class and its descendant classes
def foo
read_file
rescue Errno::ENOENT => e
handle_error(e)
end
Don’t use exceptions for flow of control.
# bad
begin
n / d
rescue ZeroDivisionError
puts 'Cannot divide by 0!'
end
# good
if d.zero?
puts 'Cannot divide by 0!'
else
n / d
end
Avoid rescuing the Exception
class.
This will trap signals and calls to exit
, requiring you to kill -9
the process.
# bad
begin
# calls to exit and kill signals will be caught (except kill -9)
exit
rescue Exception
puts "you didn't really want to exit, right?"
# exception handling
end
# good
begin
# a blind rescue rescues from StandardError, not Exception as many
# programmers assume.
rescue => e
# exception handling
end
# also good
begin
# an exception occurs here
rescue StandardError => e
# exception handling
end
Put more specific exceptions higher up the rescue chain, otherwise they’ll never be rescued from.
# bad
begin
# some code
rescue StandardError => e
# some handling
rescue IOError => e
# some handling that will never be executed
end
# good
begin
# some code
rescue IOError => e
# some handling
rescue StandardError => e
# some handling
end
Prefer the use of exceptions from the standard library over introducing new exception classes.
Use the convenience methods File.read
or File.binread
when only reading a file start to finish in a single operation.
## text mode
# bad (only when reading from beginning to end - modes: 'r', 'rt', 'r+', 'r+t')
File.open(filename).read
File.open(filename, &:read)
File.open(filename) { |f| f.read }
File.open(filename) do |f|
f.read
end
File.open(filename, 'r').read
File.open(filename, 'r', &:read)
File.open(filename, 'r') { |f| f.read }
File.open(filename, 'r') do |f|
f.read
end
# good
File.read(filename)
## binary mode
# bad (only when reading from beginning to end - modes: 'rb', 'r+b')
File.open(filename, 'rb').read
File.open(filename, 'rb', &:read)
File.open(filename, 'rb') { |f| f.read }
File.open(filename, 'rb') do |f|
f.read
end
# good
File.binread(filename)
Use the convenience methods File.write
or File.binwrite
when only opening a file to create / replace its content in a single operation.
## text mode
# bad (only truncating modes: 'w', 'wt', 'w+', 'w+t')
File.open(filename, 'w').write(content)
File.open(filename, 'w') { |f| f.write(content) }
File.open(filename, 'w') do |f|
f.write(content)
end
# good
File.write(filename, content)
## binary mode
# bad (only truncating modes: 'wb', 'w+b')
File.open(filename, 'wb').write(content)
File.open(filename, 'wb') { |f| f.write(content) }
File.open(filename, 'wb') do |f|
f.write(content)
end
# good
File.binwrite(filename, content)
Release external resources obtained by your program in an ensure
block.
f = File.open('testfile')
begin
# .. process
rescue
# .. handle error
ensure
f.close if f
end
Use versions of resource obtaining methods that do automatic resource cleanup when possible.
# bad - you need to close the file descriptor explicitly
f = File.open('testfile')
# some action on the file
f.close
# good - the file descriptor is closed automatically
File.open('testfile') do |f|
# some action on the file
end
When doing file operations after confirming the existence check of a file, frequent parallel file operations may cause problems that are difficult to reproduce. Therefore, it is preferable to use atomic file operations.
# bad - race condition with another process may result in an error in `mkdir`
unless Dir.exist?(path)
FileUtils.mkdir(path)
end
# good - atomic and idempotent creation
FileUtils.mkdir_p(path)
# bad - race condition with another process may result in an error in `remove`
if File.exist?(path)
FileUtils.remove(path)
end
# good - atomic and idempotent removal
FileUtils.rm_f(path)
Use the platform independent null device (File::NULL
) rather than hardcoding a value (/dev/null
on Unix-like OSes, NUL
or NUL:
on Windows).
# bad - hardcoded devices are platform specific
File.open("/dev/null", 'w') { ... }
# bad - unnecessary ternary can be replaced with `File::NULL`
File.open(Gem.win_platform? ? 'NUL' : '/dev/null', 'w') { ... }
# good - platform independent
File.open(File::NULL, 'w') { ... }
Avoid the use of parallel assignment for defining variables.
Parallel assignment is allowed when it is the return of a method call (e.g. Hash#values_at
), used with the splat operator, or when used to swap variable assignment.
Parallel assignment is less readable than separate assignment.
# bad
a, b, c, d = 'foo', 'bar', 'baz', 'foobar'
# good
a = 'foo'
b = 'bar'
c = 'baz'
d = 'foobar'
# good - swapping variable assignment
# Swapping variable assignment is a special case because it will allow you to
# swap the values that are assigned to each variable.
a = 'foo'
b = 'bar'
a, b = b, a
puts a # => 'bar'
puts b # => 'foo'
# good - method return
def multi_return
[1, 2]
end
first, second = multi_return
# good - use with splat
first, *list = [1, 2, 3, 4] # first => 1, list => [2, 3, 4]
hello_array = *'Hello' # => ["Hello"]
a = *(1..3) # => [1, 2, 3]
Use parallel assignment when swapping 2 values.
# bad
tmp = x
x = y
y = tmp
# good
x, y = y, x
Avoid the use of unnecessary trailing underscore variables during parallel assignment. Named underscore variables are to be preferred over underscore variables because of the context that they provide. Trailing underscore variables are necessary when there is a splat variable defined on the left side of the assignment, and the splat variable is not an underscore.
# bad
foo = 'one,two,three,four,five'
# Unnecessary assignment that does not provide useful information
first, second, _ = foo.split(',')
first, _, _ = foo.split(',')
first, *_ = foo.split(',')
# good
foo = 'one,two,three,four,five'
# The underscores are needed to show that you want all elements
# except for the last number of underscore elements
*beginning, _ = foo.split(',')
*beginning, something, _ = foo.split(',')
a, = foo.split(',')
a, b, = foo.split(',')
# Unnecessary assignment to an unused variable, but the assignment
# provides us with useful information.
first, _second = foo.split(',')
first, _second, = foo.split(',')
first, *_ending = foo.split(',')
Use shorthand self assignment operators whenever applicable.
# bad
x = x + y
x = x * y
x = x**y
x = x / y
x = x || y
x = x && y
# good
x += y
x *= y
x **= y
x /= y
x ||= y
x &&= y
Use ||=
to initialize variables only if they’re not already initialized.
# bad
name = name ? name : 'Bozhidar'
# bad
name = 'Bozhidar' unless name
# good - set name to 'Bozhidar', only if it's nil or false
name ||= 'Bozhidar'
Warning
|
Don’t use # bad - would set enabled to true even if it was false
enabled ||= true
# good
enabled = true if enabled.nil? |
Use &&=
to preprocess variables that may or may not exist.
Using &&=
will change the value only if it exists, removing the need to check its existence with if
.
# bad
if something
something = something.downcase
end
# bad
something = something ? something.downcase : nil
# ok
something = something.downcase if something
# good
something = something && something.downcase
# better
something &&= something.downcase
Prefer equal?
over ==
when comparing object_id
. Object#equal?
is provided to compare objects for identity, and in contrast Object#==
is provided for the purpose of doing value comparison.
# bad
foo.object_id == bar.object_id
# good
foo.equal?(bar)
Similarly, prefer using Hash#compare_by_identity
than using object_id
for keys:
# bad
hash = {}
hash[foo.object_id] = :bar
if hash.key?(baz.object_id) # ...
# good
hash = {}.compare_by_identity
hash[foo] = :bar
if hash.key?(baz) # ...
Note that Set
also has Set#compare_by_identity
available.
Avoid explicit use of the case equality operator ===
.
As its name implies it is meant to be used implicitly by case
expressions and outside of them it yields some pretty confusing code.
# bad
Array === something
(1..100) === 7
/something/ === some_string
# good
something.is_a?(Array)
(1..100).include?(7)
some_string.match?(/something/)
Note
|
With direct subclasses of BasicObject , using is_a? is not an option since BasicObject doesn’t provide that method (it’s defined in Object ). In those
rare cases it’s OK to use === .
|
Prefer is_a?
over kind_of?
. The two methods are synonyms, but is_a?
is the more commonly used name in the wild.
# bad
something.kind_of?(Array)
# good
something.is_a?(Array)
Prefer is_a?
over instance_of?
.
While the two methods are similar, is_a?
will consider the whole inheritance
chain (superclasses and included modules), which is what you normally would want
to do. instance_of?
, on the other hand, only returns true
if an object is an
instance of that exact class you’re checking for, not a subclass.
# bad
something.instance_of?(Array)
# good
something.is_a?(Array)
Use Object#instance_of?
instead of class comparison for equality.
# bad
var.class == Date
var.class.equal?(Date)
var.class.eql?(Date)
var.class.name == 'Date'
# good
var.instance_of?(Date)
Do not use eql?
when using ==
will do.
The stricter comparison semantics provided by eql?
are rarely needed in practice.
# bad - eql? is the same as == for strings
'ruby'.eql? some_str
# good
'ruby' == some_str
1.0.eql? x # eql? makes sense here if want to differentiate between Integer and Float 1
Use the Proc call shorthand when the called method is the only operation of a block.
# bad
names.map { |name| name.upcase }
# good
names.map(&:upcase)
Prefer {…}
over do…end
for single-line blocks.
Avoid using {…}
for multi-line blocks (multi-line chaining is always ugly).
Always use do…end
for "control flow" and "method definitions" (e.g. in Rakefiles and certain DSLs).
Avoid do…end
when chaining.
names = %w[Bozhidar Filipp Sarah]
# bad
names.each do |name|
puts name
end
# good
names.each { |name| puts name }
# bad
names.select do |name|
name.start_with?('S')
end.map { |name| name.upcase }
# good
names.select { |name| name.start_with?('S') }.map(&:upcase)
Some will argue that multi-line chaining would look OK with the use of {…}, but they should ask themselves - is this code really readable and can the blocks' contents be extracted into nifty methods?
Use multi-line do
…end
block instead of single-line do
…end
block.
# bad
foo do |arg| bar(arg) end
# good
foo do |arg|
bar(arg)
end
# bad
->(arg) do bar(arg) end
# good
->(arg) { bar(arg) }
Consider using explicit block argument to avoid writing block literal that just passes its arguments to another block.
require 'tempfile'
# bad
def with_tmp_dir
Dir.mktmpdir do |tmp_dir|
Dir.chdir(tmp_dir) { |dir| yield dir } # block just passes arguments
end
end
# good
def with_tmp_dir(&block)
Dir.mktmpdir do |tmp_dir|
Dir.chdir(tmp_dir, &block)
end
end
with_tmp_dir do |dir|
puts "dir is accessible as a parameter and pwd is set: #{dir}"
end
Avoid comma after the last parameter in a block, except in cases where only a single argument is present and its removal would affect functionality (for instance, array destructuring).
# bad - easier to move/add/remove parameters, but still not preferred
[[1, 2, 3], [4, 5, 6].each do |a, b, c,|
a + b + c
end
# good
[[1, 2, 3], [4, 5, 6].each do |a, b, c|
a + b + c
end
# bad
[[1, 2, 3], [4, 5, 6].each { |a, b, c,| a + b + c }
# good
[[1, 2, 3], [4, 5, 6].each { |a, b, c| a + b + c }
# good - this comma is meaningful for array destructuring
[[1, 2, 3], [4, 5, 6].map { |a,| a }
Do not use nested method definitions, use lambda instead. Nested method definitions actually produce methods in the same scope (e.g. class) as the outer method. Furthermore, the "nested method" will be redefined every time the method containing its definition is called.
# bad
def foo(x)
def bar(y)
# body omitted
end
bar(x)
end
# good - the same as the previous, but no bar redefinition on every foo call
def bar(y)
# body omitted
end
def foo(x)
bar(x)
end
# also good
def foo(x)
bar = ->(y) { ... }
bar.call(x)
end