I tried to come up with an integral equation for fun, and made this creature:$\def\d{\mathrm d}$ $$ f(x)-\int_x^{2x}f(t)\,\d t=0, $$ so I followed these steps: $$ \begin{aligned} &f(x)+\int_x^{2x}f(t)\,\d t=0\\ \implies\quad&\frac{\d f}{\d x}+2f(2x)-f(x)=0\\ \implies\quad&\frac{\d f}{\d x}-f(x)=-2f(2x)\\ \implies \quad&\left(\frac{\d}{\d x}-1\right)f(x)=-2f(2x)\\ \implies\quad&f(x)=\frac{2f(2x)}{1-\frac{\d}{\d x}}\\ \implies\quad&-f(x)=2f(2x)\sum_{n=0}^{\infty}\frac{\d^n}{\d x^n}=2f(2x)\left(1+\frac{\d}{\d x}+\frac{\d^2}{\d x^2}+\ldots\right)=2f(2x)\\ \implies\quad&f(x)=2f(2x). \end{aligned} $$
But since I am but a humble mathematical sailor, I don’t know functional analysis yet, so I couldn’t really prove the series expansion, but the function equations suggests that $f(x)=0$ is the solution to the integral equation.