We strive to create an environment conducive to many different types of research across many different time scales and levels of risk.
Our researchers drive advancements in computer science through both fundamental and applied research.
We regularly open-source projects with the broader research community and apply our developments to Google products.
Publishing our work allows us to share ideas and work collaboratively to advance the field of computer science.
We make products, tools, and datasets available to everyone with the goal of building a more collaborative ecosystem.
Supporting the next generation of researchers through a wide range of programming.
Participating in the academic research community through meaningful engagement with university faculty.
Connecting with the broader research community through events is essential for creating progress in every aspect of our work.
Natural Language Processing (NLP) research at Google focuses on algorithms that apply at scale, across languages, and across domains. Our systems are used in numerous ways across Google, impacting user experience in search, mobile, apps, ads, translate and more.
Our work spans the range of traditional NLP tasks, with general-purpose syntax and semantic algorithms underpinning more specialized systems. We are particularly interested in algorithms that scale well and can be run efficiently in a highly distributed environment.
Our syntactic systems predict part-of-speech tags for each word in a given sentence, as well as morphological features such as gender and number. They also label relationships between words, such as subject, object, modification, and others. We focus on efficient algorithms that leverage large amounts of unlabeled data, and recently have incorporated neural net technology.
On the semantic side, we identify entities in free text, label them with types (such as person, location, or organization), cluster mentions of those entities within and across documents (coreference resolution), and resolve the entities to the Knowledge Graph.
Recent work has focused on incorporating multiple sources of knowledge and information to aid with analysis of text, as well as applying frame semantics at the noun phrase, sentence, and document level.
Africa team
Athena
Cloud AI Research
Impact-Driven Research, Innovation and Moonshots
Language
We're always looking for more talented, passionate people.