EfficientNet Trained on ImageNet with NoisyStudent

Identify the main object in an image

Released in 2019, this model utilizes the techniques of NoisyStudent data augmentation on the EfficientNet architectures to effectively perform image classification.

Number of models: 8

Training Set Information

Performance

Examples

Resource retrieval

Get the pre-trained net:

In[1]:=
NetModel["EfficientNet Trained on ImageNet with NoisyStudent", \
"ParametersInformation"]
Out[2]=
NetModel[{"EfficientNet Trained on ImageNet with NoisyStudent", "Architecture" -> "B7"}, "UninitializedEvaluationNet"]
Out[4]=
Entity object, which can be queried:

In[6]:=
pred["Properties"]
Out[7]=
(* Evaluate this cell to get the example input *) CloudGet["https://www.wolframcloud.com/obj/001f5dae-ed4e-4140-989a-c85cc38f5411"]
Out[9]=
EntityValue[
 NetExtract[
   NetModel["EfficientNet Trained on ImageNet with NoisyStudent"], "Output"][["Labels"]], "Name"]
Out[10]=
extractor = Take[NetModel[
   "EfficientNet Trained on ImageNet with NoisyStudent"], {1, -3}]
Out[11]=

Visualize convolutional weights

Extract the weights of the first convolutional layer in the trained net:

In[14]:=
weights = NetExtract[
   NetModel[
    "EfficientNet Trained on ImageNet with NoisyStudent"], \
{"stem_conv", "Weights"}];

Show the dimensions of the weights:

In[16]:=

Transfer learning

Use the pre-trained model to build a classifier for telling apart images of motorcycles and bicycles. Create a test set and a training set:

In[18]:=
tempNet = Take[NetModel[
   "EfficientNet Trained on ImageNet with NoisyStudent"], {1, -3}]
Out[20]=
TargetDevice -> "GPU" for training on a GPU):

In[22]:=

Net information

Inspect the number of parameters of all arrays in the net:

In[24]:=
Information[
 NetModel["EfficientNet Trained on ImageNet with NoisyStudent"], \
"ArraysElementCounts"]
Out[24]=
Information[
 NetModel["EfficientNet Trained on ImageNet with NoisyStudent"], \
"ArraysTotalElementCount"]
Out[25]=
Information[
 NetModel["EfficientNet Trained on ImageNet with NoisyStudent"], \
"LayerTypeCounts"]
Out[26]=

Out[29]=

Requirements

Wolfram Language 12.1 (March 2020) or above

Resource History

Reference

Follow Lee on X/Twitter - Father, Husband, Serial builder creating AI, crypto, games & web tools. We are friends :) AI Will Come To Life!

Check out: eBank.nz (Art Generator) | Netwrck.com (AI Tools) | Text-Generator.io (AI API) | BitBank.nz (Crypto AI) | ReadingTime (Kids Reading) | RewordGame | BigMultiplayerChess | WebFiddle | How.nz | Helix AI Assistant