Képletek és függvények súgója
- Üdvözöljük!
-
- A függvények áttekintése
- Függvények listája kategóriák szerint
- Argumentumok típusai és értékei
- Karakterlánc-operátorok és helyettesítő karakterek használata
- Tippek a pénzügyi függvények kijelöléséhez
- Értékek kerekítésére szolgáló függvények
- Argumentumként feltételeket és helyettesítő karaktereket használó függvények
-
- ACCRINT
- ACCRINTM
- BONDDURATION
- BONDMDURATION
- COUPDAYBS
- COUPDAYS
- COUPDAYSNC
- COUPNUM
- CUMIPMT
- CUMPRINC
- PÉNZNEM
- PÉNZNEMKÓD
- PÉNZNEMÁTVÁLTÁS
- PÉNZNEME
- KCS2
- KCSA
- DISC
- EFFECT
- JBÉ
- INTRATE
- RRÉSZLET
- BMR
- LRÉSZLETKAMAT
- MEGTÉRÜLÉS
- NOMINAL
- PER.SZÁM
- NMÉ
- RÉSZLET
- PRÉSZLET
- ÁR
- PRICEDISC
- PRICEMAT
- MÉ
- RÁTA
- ÉRKEZETT
- LCSA
- RÉSZVÉNY
- RÉSZVÉNYE
- SYD
- ÉCSRI
- XBMR
- XNMÉ
- YIELD
- YIELDDISC
- YIELDMAT
-
- ABS
- PLAFON
- KOMBINÁCIÓK
- PÁROS
- KITEVŐ
- FAKT
- FACTDOUBLE
- PADLÓ
- GCD
- EGÉSZ
- LCM
- LN
- LOG
- LOG10
- MARADÉK
- MROUND
- MULTINOMIAL
- PÁRATLAN
- PI
- POLYNOMIAL
- HATVÁNY
- SZORZAT
- QUOTIENT
- VÉL
- VÉL.TARTOMÁNY
- RÓMAI
- KEREKÍTÉS
- KEREKÍTÉS.LE
- KEREKÍTÉS.FEL
- SERIESSUM
- ELŐJEL
- GYÖK
- SQRTPI
- RÉSZÖSSZEG
- SZUM
- SZUMHA
- SZUMHATÖBB
- SZORZATÖSSZEG
- NÉGYZETÖSSZEG
- SZUMX2BŐLY2
- SZUMX2MEGY2
- SZUMXBŐLY2
- CSONK
-
- ÁTL.ELTÉRÉS
- ÁTLAG
- ÁTLAGA
- ÁTLAGHA
- ÁTLAGHATÖBB
- BÉTA.ELOSZLÁS
- INVERZ.BÉTA
- BINOM.ELOSZLÁS
- KHI.ELOSZLÁS
- INVERZ.KHI
- KHI.PRÓBA
- MEGBÍZHATÓSÁG
- KORREL
- DARAB
- DARAB2
- DARABÜRES
- DARABTELI
- DARABHATÖBB
- KOVAR
- KRITBINOM
- SQ
- EXP.ELOSZLÁS
- F.ELOSZLÁS
- INVERZ.F
- ELŐREJELZÉS
- GYAKORISÁG
- GAMMA.ELOSZLÁS
- INVERZ.GAMMA
- GAMMALN
- MÉRTANI.KÖZÉP
- HARM.KÖZÉP
- METSZ
- NAGY
- LIN.ILL
- INVERZ.LOG.ELOSZLÁS
- LOG.ELOSZLÁS
- MAX
- MAX2
- MAXHATÖBB
- MEDIÁN
- MIN
- MIN2
- MINHATÖBB
- MÓDUSZ
- NEGBINOM.ELOSZL
- NORM.ELOSZL
- INVERZ.NORM
- STNORMELOSZL
- INVERZ.STNORM
- PERCENTILIS
- SZÁZALÉKRANG
- VARIÁCIÓK
- POISSON
- VALÓSZÍNŰSÉG
- KVARTILIS
- SORSZÁM
- MEREDEKSÉG
- KICSI
- NORMALIZÁLÁS
- SZÓRÁS
- SZÓRÁSA
- SZÓRÁSP
- SZÓRÁSPA
- T.ELOSZLÁS
- INVERZ.T
- T.PRÓBA
- VAR
- VARA
- VARP
- VARPA
- WEIBULL
- Z.PRÓBA
- Copyright
A VARPA függvény által visszaadott variancia négyzetgyökét a SZÓRÁSPA függvény adja vissza.
Példa |
---|
Tegyük fel, hogy felszerelt egy hőmérséklet-érzékelőt a kaliforniai Cupertinóban. Az érzékelő minden nap rögzíti a legmagasabb és a legalacsonyabb hőmérsékleteket. A következő táblázat a július első néhány napjáról származó adatokat tartalmazza, és a legmagasabb és a legalacsonyabb hőmérsékletek sokaságának mintájaként használja (vegye figyelembe, hogy ez csak egy példa, statisztikailag nem lenne érvényes). Július 5-én az érzékelő meghibásodott, így a táblázatban az adatok helyett az n.a. vagy nincs adat értékek láthatók. |
A | B | C | |
---|---|---|---|
1 | Dátum | Magas | Alacsony |
2 | 2010.07.01. | 58 | 58 |
3 | 2010.07.02. | 84 | 61 |
4 | 2010.07.03. | 82 | 59 |
5 | 2010.07.04. | 78 | 55 |
6 | 2010.07.05. | nincs adat | nincs adat |
7 | 2010.07.06. | 81 | 57 |
8 | 2010.07.07. | 93 | 67 |
A =VARPA(B2:B8) eredménye körülbelül 867,142857142857, a minta napi csúcshőmérsékleteinek VARPA által mért szóródása (a variancia a szóródás mérésére szolgál). Meghaladja a csúcshőmérsékletek tényleges tartományát, mert az „n.a.” hőmérséklet nulla értéket kap. Ha nagy adathalmazzal rendelkezik, amely vizuálisan nem olvasható be egyszerűen, vagy ha automatizálni szeretné a hiányzó értékek ellenőrzését, akkor összehasonlíthatja a =VARP(B2:B8) eredményét, ami körülbelül 112,5555555555556, a VARPA eredményével, ami körülbelül 867,142857142857. Ha nem egyenlők (mint ebben az esetben is), az azt jelzi, hogy az adathalmaz szöveges (például „n.a.”) vagy egy vagy több logikai értéket (IGAZ vagy HAMIS) tartalmaz. |