Experience Latex users
The following code is the template I am using for my notes. Since the top margin of Chapter 1 is a lot greater than I thought and this pushes the last bullet point (circle in pink) to the next page. Reducing the set chapter title of titlesec margin would solve this problem.
Could you please give me some tips on this? Thank you.
\documentclass[12pt]{book}
\usepackage[margin=0.5in]{geometry}
%
% Packages
\usepackage[utf8]{inputenc}
\usepackage{amsmath, amssymb, amsfonts} % math symbols
\usepackage{geometry}
\usepackage{graphicx} % figures
\usepackage{tikz} % drawings
\usepackage{hyperref} % clickable links
\usepackage{fancyhdr} % headers/footers
\usepackage{titlesec} % formatting chapter titles
% Page layout
%
\usepackage{pgfplots}
\usepackage{mathtools}
\usepackage{cancel}
\usepackage{pgfplots}
\usepackage{array}
\usepackage{amsmath}
\newtheorem{theorem}{THEOREM}
\newtheorem{proof}{PROOF}
\usepackage{tikz}
\usepackage{amssymb}
\usetikzlibrary{patterns}
\usepackage{bigints}
\usepackage{color}
\usepackage{tcolorbox}
\usepackage{cancel}
\usepackage{soul}
\usepackage{multirow}
\usepackage{dcolumn}
\usepackage{graphicx} % Required for \includegraphics
%\usepackage{background}
%\usepackage{fullpage, lipsum, tikz}
%\usepackage{eso-pic}
%
% Headers and footers
\pagestyle{fancy}
\fancyhf{}
\fancyhead[LE,RO]{\thepage}
\fancyhead[LO]{\rightmark}
\fancyhead[RE]{\leftmark}
%
\titlespacing{\chapter}{0pt}{-128pt}{1cm}% <-- CHANGE DONE HERE!!
\begin{document}
%
% Title
\begin{titlepage}
\centering
\vspace*{3cm}
{\Huge\bfseries TITLE}\\[1cm]
%{\Large Covering Five Core Topics}\\[2cm]
\vfill
{\Large ME}\\
%{\Large \today}
\end{titlepage}
\tableofcontents
\newpage
%\voffset -2.0cm
%
\chapter{Natural Numbers}
\textbf{01 DIVISORS AND MULTIPLES}\\
\\
\textbf{QUOTIENTS AND REMAINDERS}\\
\\
Let $A$, $B$, $Q$, and $R$ be whole numbers\\[0.15cm]
When dividing $A$ by $B$, let the quotient be $Q$ and the remainder be $R$.\\[0.15cm]
Then\\
\\
$A = B \times Q + R$, where $0 \le R < B$.\\
\\
If $R = 0$, then $A$ is said to be divisible by $B$.\\
\\\\
\textbf{DIVISORS AND MULTIPLES}\\
\\
If $A$ is divisible by $B$, that is, if $A = B \times Q$, then $A$ is a multiple of $B$, and $B$ is a divisor of $A$.\\
\\
For example, $24$ is divisible by $6$.\\[0.15cm]
Since $24 = 6 \times 4$, $24$ is a multiple of $6$ and $6$ is a divisor of $24$.\\
\\
Note that $0$ is a multiple of every non-zero whole number.\\[0.15cm]
This is because, for any non-zero whole number $K$, we have\\
\\
$0 = K \times 0$.\\
\\
In other words, every non-zero whole number is a divisor of $0$.\\
\\\\
\textbf{TESTS FOR MULTIPLES}\\
\\
$\bullet$ A number is a multiple of $4$ if its last two digits are a multiple of $4$.\\
\\
$\bullet$ A number is a multiple of $8$ if its last three digits are a multiple of $8$.\\
\\
$\bullet$ A number is a multiple of $9$ if the sum of its digits is a multiple of $9$.\\
\\
$\bullet$ A number is a multiple of $3$ if the sum of its digits is a multiple of $3$.\\
\\
%
\newpage
\voffset 0cm
\text{}\\
\\
$\bullet$ A number is a multiple of $11$ if the difference between the sum of its digits in odd positions and the sum\\[0.15cm]
\hspace*{4mm}of its digits in even positions is $0$ or a multiple of $11$.\\
\\\\
\textbf{02 POWERS AND PRIME NUMBERS}\\
\\
\textbf{POWERS}\\
\\
A power is a notation used to show repeated multiplication of a number or variable.
\end{document}