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PRIMALITY OF CERTAIN KNOTS

Kenneth A. Perko, Jr.

This paper proves that the fifteen 4-bridged examples
in J. H. Conway's table of ll-crossing knots [2] are each
actually prime. Note that we avoid reliance upon assumptions
that the prime knot tables are complete or that the minimal
crossing number is additive. Cf. [8] and [3].

Reproduced herewith are diagrams of the 552 known
ll-crossing primes, of which we here consider knots 12, 84,
220, 225, 240, 357, and 426 through 434. Proof of their

primality by another method appears in [4].

Proposition. A knot is prime if (1) its bridge number
b(k) < 4 and (2) with respect to the homology of its 3-fold
dihedral covering spaces (a) no H1M3(k) has odd order and

(b) the orders of the H M3(k)’s have no common factor >3.

1

Remarks. The first condition may be verified by finding
four generators of an entire knot diagram. Compare [l1] and
[6, p. 606] but beware the concealed conjecture in the latter
that bridge number equals the minimal number of Wirtinger
generators. The éecond condition must be verified by calcu-
lation of HlM3(k) for all possible representations of the
knot group on S3 [5]. 1In the case of each of our 15 examples
we get two homology groups, ZG and Z+ZZ' Note that the

existence of a single noncyclic H1M3(k) implies that

b(k) > 3 [1].
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Proof. It follows from condition (1) and Schubert's

Satz 7 [7]——b(kl#k2) = b(k,)+b(k,)-1--that k is prime

1 2
unless it has a 2-bridged factor. Assume, arguendo, that
k = (a,B8) #k', where (a,B) is Schubert's normal form nota-
tion for 2-bridged knots. Recall that o is odd and >1.

Either 3 divides o or 3 does not divide a. We shall derive

a contradiction from each of these two possibilities.

Case A. 3|a. Then k has a 3-fold irregular covering

obtained from the S, cover of (a,B) and the constant map on

3
the k' factor--i.e., that which sends all meridians to a
single transposition. The homology of such a cover is the
same as that of the double branched cover of the knot k'.

But the order of the latter, |H1M2(k')| = A(-1) (k"), is

well known to be odd, which violates condition (2) (a).

Case B. 3fo. Here every 3-fold irregular cover of k
must be the constant map on the (o,B8) factor. By a suitable
adjoining of relations derived from the k' factor each such
HlM3(k) can be shown to admit a surjection on the homology
of the 2-fold cyclic cover of (a,B), Hle(u,B) = Za' But
this contradicts condition (2)(b).’ (Indeed, in the case of
our 15 examples we get ZG-» Zu and Z+ZZ-» Za which together
imply that o = 3.)

Thus k can have no 2-bridged factor and is therefore

prime.



PRIME KNOTS WITH ELEVEN CROSSINGS
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lNote that Conway's ll-crossing table omits knot types

549 through 552. Several thousand l2-crossing knots have
recently been classified by Morwen B. Thistlethwaite of the
Polytechnic of the South Bank.
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