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Chapter 1

INTRODUCTION

`Where shall I begin, please your Majesty?',

he asked. `Begin at the beginning', the King

said, gravely, `and go on till the end: then

stop.'

{ Lewis Carroll, \Alice in Wonderland"

Modern sequential computers are approaching the fundamental physical limitation

that signals cannot travel faster than the speed of light. However, current scienti�c prob-

lems [Gra91] require the computational power of thousands of these sequential computers,

and the demand for computational power is ever-increasing. This situation has led com-

puter architects to design multiprocessor computer systems in the hopes of using the

collective computational power of the multiple processors to solve these large problems.

Shared memory multiprocessors provide each of the processors equal access to a shared

memory, but as the speed of the individual processors increases, the number of processors

that can be supported in such a system decreases. Due to this inability of current shared

memory multiprocessors to scale past a relatively small number of processors, today's

most powerful computers are distributed memory multiprocessors [Thi91, Int91, nCU90b],

capable of supporting thousands of powerful processors, whose aggregate computing ca-

pabilities are su�cient for solving many of the large problems that face our scienti�c

community today.

Unfortunately, these advances in hardware design have not been followed by corre-

sponding advances in software. High-level programming abstractions for these machines

are almost non-existent, leaving most programmers the task of explicitly programming

these architectures using machine-dependent, low-level abstractions. This approach is

error-prone and encumbers the programmer with many details outside of the application

domain, such as explicit data distribution and synchronization. In addition to identifying,

allocating, and controlling parallel tasks, the programmer must control the distribution

of data among the separate memories so as to minimize remote memory latencies. Also,

if the machine does not provide hardware support for a single addressing space, the pro-

grammer must also insert the appropriate message passing calls needed to exchange data

from one remote memory to another.

This dissertation studies the e�ectiveness of an alternative approach, where programs

written in an implicitly parallel, machine-independent programming language are executed

e�ciently on distributed memory multiprocessors. The compiler creates the parallel tasks,

and the runtime system controls the distribution of the tasks for e�cient parallel execution.

The runtime system also supports a single addressing space for user data structures that

allows for 
exible distribution schemes and the ability to link the distribution of data with

the distribution of the parallel tasks that will access the data so that remote memory

references are minimized.
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As distributed memory multiprocessors continue to grow in size and computational

power, two issues are becoming increasingly important:

� Detecting enough parallelism in an application to keep the machine resources busy.

As the number of processors in these systems increases into the thousands, the

amount of parallelism needed to obtain thousand-fold speedups increases propor-

tionally. Applicative (or functional) languages have demonstrated their ability to

expose inherent parallelism in an application as well as to simplify the task of par-

allel programming [Nik90, FCO90].

� Managing the parallelism for e�cient execution on a large variety of processor con-

�gurations, from a few to thousands. Once the parallelism in an application has

been revealed, it is up to the compiler, runtime system, and hardware to manage

the parallelism for e�cient utilization of the machine resources. Since most large

distributed memory multiprocessors have several orders of magnitude di�erence in

the time to access local memory versus the time to access remote memory, managing

this latency is necessary to e�cient execution. Latency can be avoided by keeping

many memory accesses local, and tolerated by switching to other useful work that

can be done in the time it takes to satisfy the remote reference (i.e. multithreading).

Latency avoidance requires that a code segment exhibit some degree of locality, and

that it be mapped to the same node as the data it references. Latency tolerance

requires a fast context switching mechanism and much more program parallelism

than machine parallelism.

Sisal (Streams and Iterations in a Single Assignment Language) is a functional lan-

guage that supports data types and operations for scienti�c computation [MSA
+
85]. Cur-

rent implementations of Sisal exist for sequential machines and for shared memory mul-

tiprocessor architectures [CO88], including vector [Can92, LSF88], hierarchical memory

[WFC91], and data
ow [BS89], where the hardware supports the shared memory abstrac-

tion. The Sisal compiler consists of three parts:

1. The frontend is responsible for ensuring the syntactic correctness of a Sisal program

and translating the Sisal source program into an optimized intermediate dependence

graph form called IF1 [SG85].

2. The backend is responsible for adding memory requirements to the IF1 graph, per-

forming build-in-place and update-in-place optimizations to eliminate aggregate copies

[Can89], applying a standard set of compiler optimizations, and �nally generating

C as the target code.

3. The target C code compiled under the native C compiler and linked with the runtime

system to produce machine-speci�c object code. The runtime system is responsible

for providing the Sisal compiler with two main abstractions: task management and

memory management. Tasks are portions of sequential code that can be executed

independently.

The current compiler assumes that all data structures exist in a 
at, shared address

space and that the runtime routines employ shared queues and locks. While this has

provided e�cient implementations of Sisal on shared memory multiprocessor architectures
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[Can92], it has precluded a straightforward port of the Sisal system to distributed memory

multiprocessors.

This dissertation focuses on the design and implementation of runtime support for a

shared memory programming paradigm on distributed memory multiprocessors with little

or no support from the compiler or hardware. We use this system as a basis for studying

the abilities and limitations of a runtime system in providing e�cient distributed memory

execution. In particular, we describe the design and implementation of a runtime system

for the execution of Sisal programs on the nCUBE/2 distributed memory multiprocessor,

where the Sisal compiler is unaware of the underlying architecture.

The remainder of this dissertation is organized as follows. Chapter 2 provides the mo-

tivation and preliminary background necessary for establishing the research goals. Chap-

ter 3 examines related research and its relationship to our work. Chapter 4 introduces the

design of our distributed memory task management system, including multi-level distribu-

tion and multithreading. Chapter 5 describes the design of our distributed memory data

management system, also known as VISA. Chapter 6 introduces the sample programs that

we use to evaluate our runtime system. The programs are written in Sisal and cover a wide

range of common scienti�c computations. Chapter 7 presents the results and analysis of

several experiments using our sample programs. Chapter 8 concludes and provides ideas

for extensions of this research.



Chapter 2

BACKGROUND

Computer Science is no more about computers

than astronomy is about telescopes.

{ E. W. Dijkstra

This chapter provides the motivation and background for our research. We start with

an overview of distributed memory multiprocessors, their architecture and features. Next

we examine the issue of detecting parallelism in a program from the language perspective.

Finally, we look at the management of parallelism and the e�ect it can have on the two

fundamental issues in multiprocessing.

2.1 Multiprocessor Systems

Distributed memory multiprocessors represent today's most powerful class of comput-

ers [Thi91, Int91, nCU90b], and the best hope of achieving the scalable parallelism neces-

sary for solving the Grand Challenge problems that face our scienti�c community [Gra91].

To understand why distributed memory multiprocessors have come to the forefront of high

performance computing, we examine the issues that govern today's multiprocessor archi-

tectures and then compare both shared memory multiprocessors and distributed memory

multiprocessors using these issues.

1. Single Addressing Space. A multiprocessor system that supports a single addressing

space identi�es every memory location in all memory elements with a unique and

uniform address from a single contiguous space. The advantages of having a single

addressing space include the ability to reference all memory locations using a single

addressing scheme, which greatly simpli�es the programming of the machine, and

the ability to pass procedural parameters using their address rather than their value.

For scienti�c applications that employ many large data structures, the overhead of

copying parameters required for passing by value can be overwhelming.

2. Shared Memory. If a multiprocessor system supports a single addressing space, then

it may additionally support shared memory, which we de�ne as the ability to place

a data object anywhere in the memory system without a�ecting the performance of

the corresponding application. This implies that there is a uniform access time to

all memory locations in the system. The advantage of having shared memory is that

data distribution, which is the problem of distributing the program data structures

among the participating memory elements for optimal program execution, is trivial,

since, by de�nition, data placement does not a�ect performance.
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Figure 2.1: Organization of a shared memory multiprocessor

3. Scalability. We de�ne a multiprocessor system to be scalable if the architecture can

incrementally support a large number
1
of nodes (processing and memory elements),

and the addition of more nodes increases the system's performance. Typically, scal-

ability depends on the interconnection scheme used to combine the processing and

memory elements. For example, a fully-connected network, in which every process-

ing element is connected to every other processing element, is not scalable (not to

mention buildable), since the complexity (hence cost) of the network increases as

the square of the number of processing elements. The advantage of a scalable sys-

tem is that a very large number of processors can be provided and, for many of the

problems that face our scienti�c community, this is essential.

When we examine a multiprocessor system from an organizational view, we see that

it contains a set of processing elements, a set of memory elements, and hardware for

interconnecting these sets called the interconnection network. We restrict our attention

to Multiple Instruction, Multiple Data (MIMD) multiprocessors, where each processing

element possesses a complete instruction set and is capable of executing code independently

of all other processors. Though there are many ways of combining these elements to form

a MIMD multiprocessor, two common organizations have emerged: shared memory and

distributed memory.

� The Shared Memory Multiprocessor Organization

A shared memory multiprocessor is one which supports shared memory at the hard-

ware level. This is typically accomplished by connecting the processing elements

with the memory elements using a high-speed bus that provides a single addressing

space and uniform access time to all memory locations (see Figure 2.1). The advan-

tage of the shared memory multiprocessor is its hardware implementation of shared

memory, which frees the programmer and all system software from the di�cult task

of data distribution and remote data access through messages. The disadvantage

of this design is that it does not scale past a relatively small number of processors

(on the order of 50), and the number is decreasing as the processor speeds increase.

1By today's standards, \a large number of processors" typically means over a hundred.
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Figure 2.2: Organization of a distributed memory multiprocessor

Another restriction to the scalability of shared memory multiprocessors is the prob-

lem of maintaining the coherence of multiple caches [DB82, CF78]. The hardware

required to keep the caches coherent adds to the cost of increasing the number of

processors, thus further limiting the scalability of the system. Examples of shared

memory multiprocessors include the Sequent Symmetry, the Alliant FX, and the

Encore Multimax.

� The Distributed Memory Multiprocessor Organization

In a distributed memory multiprocessor, each processing element is combined with

a memory element to form a node, and the nodes are then connected using a scal-

able interconnection network, such as a ring, a mesh, or a hypercube [AG89a] (see

Figure 2.2). Each node supports a separate addressing space that encompasses the

local memory. The advantage of the distributed memory multiprocessor is that it

is scalable to a very large number of processors
2
. Distributed memory multipro-

cessors that o�er only a message passing abstraction for sharing data do not have

the problem of keeping caches coherent, since the local processor caches contain

only local objects. However, as detailed in Chapter 3, there are various hardware

and software designs that o�er other methods for sharing data on these machines,

and may re-introduce the problem of cache coherence. The disadvantage of a dis-

tributed memory multiprocessor is the absence of a single addressing space, and

thus shared memory. This requires that the programmer (or system software) be

responsible for data distribution and synchronization of computations to achieve the

required remote data access (i.e. message passing), both of which are very complex

and error-prone tasks. Examples of distributed memory multiprocessors include the

intel iPSC/860 [Int91] and the nCUBE/2 [HMS
+
86].

Thus we come to the crux of the multiprocessor design issue: though distributed

memory multiprocessors are capable of supporting large numbers of processors, they are

more di�cult to program due to the problems of data distribution and multiple addressing

spaces [PB90]. We will demonstrate this point in Chapter 7. However, the issue of

scalability has overpowered the issue of programability since there are many problems that

2Current distributed memory multiprocessors contain thousands of processors.
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require a very large number of processors to complete in a reasonable amount of time. This

had led to several hardware and software approaches that attempt to empower the basic

distributed memory design with some of the virtues of shared memory, in e�ect blurring the

once-clear distinction between shared memory and distributed memory multiprocessors.

For example, distributed memory multiprocessors are being built with hardware support

for a single addressing space, though the time required to access each of the memory

addresses is not uniform [Ken92, Fra87]. These NUMA (Non-Uniform Memory Access)

machines remove the burden of explicit message passing from the programmer, but the

problem of data distribution still remains.

One of the latest hardware approaches is the Tera Computer System [AAC
+
91], which

is a descendant of the Denelcor HEP machine [Smi85] and the Horizon supercomputer

project [KS88]. From a hardware standpoint, the Tera system is a distributed memory

multiprocessor whose basic organization di�ers from most multiprocessors in that the

memory elements and processing elements are not tightly coupled as nodes. Rather,

the processing elements and memory elements are separate entities that are combined

using a scalable interconnection network. However, from an applications standpoint, the

Tera claims to be a shared memory multiprocessor in that it provides a single addressing

space and can hide the e�ects of distributed memory latency by overlapping the memory

operations with the work of another task that would eventually have to be done. By

hiding the memory latency, Tera asserts that it can achieve shared memory status; the

placement of data would not a�ect the performance of an application since all memory

latencies are hidden. Tera employs specialized hardware and multiple levels of parallelism

in hopes of successfully masking all long latency operations. Thus we see how Tera and

NUMA systems blur the once clean line between shared and distributed memory. The

success of the Tera system and its claim of achieving shared memory status is still to be

determined. A more detailed examination of Tera can be found in Chapter 3.

2.2 Latency and Synchronization: The Two Fundamental Issues in Multipro-

cessing

Every multiprocessor architecture, whether shared memory, distributed memory, or a

hybrid of these basic designs, must address the two fundamental issues in multiprocessing:

latency and synchronization [AI87].

� Latency is de�ned as the time that elapses between making a request and receiving

the associated reply. Though latency is present in I/O systems and and in function

calls, latency is generally regarded in terms of memory latency. Uniprocessors and

shared memory multiprocessors can expect constant time, and therefore constant

latency, in accessing memory locations. However, since distributed memory mul-

tiprocessors employ interconnection networks that do not provide constant access

time, they face a much larger and varying latency. When this latency cannot be

avoided by keeping the required data local, or hidden by overlapping it with useful

operations, a substantial performance penalty is incurred. Current research projects

[AAC
+
91, CSS

+
91, Bec92] are focusing on the possibility of trading parallelism for

latency. This is done by overlapping parallel execution of program segments with

communication primitives so that the communication latency is e�ectively hidden.

In order to hide the latency with overlapping program segments, the program must

be partitioned into independent tasks that can be executed in parallel. Then, when
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a memory reference is issued from a task, the system can switch from that task to

another task ready for execution. This results in a number of currently executing

tasks which then need to be synchronized so that the program remains determinate.

� Synchronization is de�ned as the temporal ordering of tasks necessary to obtain

determinate system. Task synchronization is needed for avoiding the read-before-

write race of producer-consumer parallelism, for providing a mechanism in which

to join a set of tasks at a particular location in the program (i.e. barrier), and for

providing mutually exclusive access to shared resources. Synchronization may result

in the suspension of a task until a particular event occurs, though this does not

imply that the processor need be idle; it may be possible for the processor to switch

to another task that is not blocked and execute statements from this latter task.

Thus the cost of synchronization is the time required to execute the synchronization

primitive plus either the idle time of a blocked processor, or, if the processor switches

processes, the time of two context switches: one to get to a new task and another

to return.

The two fundamental issues are very closely related: Multiprocessor systems incur

large memory latencies, giving rise to the need for hiding this latency, which implies task

switching and therefore synchronization to control the tasks. Processor architectures that

have been designed to address the issues of latency and synchronization include multi-

threaded [Smi85, AAC
+
91] and data
ow [AC86, Den80] architectures. However, these

architectures typically require unconventional hardware, such as non-von Neumann pro-

cessors and/or memories tagged with presence bits. This results in high costs for pro-

duction of special-purpose hardware. Additionally, these systems currently experience

performance problems that limit their practical use in the marketplace. Distributed mem-

ory multiprocessors, on the other hand, are commercially available today and provide the

scalability needed to build powerful computer systems. However, if we are to exploit this

growing class of computer systems, we must develop software that can address the issues

of latency and synchronization, as well as the problems of multiple addressing spaces and

a lack of true shared memory.

This gives rise to the problems of detecting the parallelism that exists in a given

algorithm (i.e. the creation of independent tasks), and managing this parallelism with the

goal of e�ciently executing the program and, if there is enough parallelism to saturate

the system, e�ciently utilizing it. The extent to which the programmer is responsible for

these tasks depends on the amount of support provided by the language, the compiler,

the runtime system, the operating system, and the machine architecture. For purposes of

portability, correctness, and ease of programming, it is desirable to alleviate the program-

mer from the implementation-speci�c details of a machine architecture. Thus we face the

challenge of providing the programmer with a high level language capable of abstract-

ing the underlying architecture, implicitly detecting the parallelism in an application, and

managing the parallelism for e�cient execution on a wide range of multiprocessor systems.

Clearly this is a challenging goal.

2.3 On Detecting Parallelism

The e�ort required to detect the parallelism that exists in a program is strongly

in
uenced by the programming methodology that is used to encode the program.
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2.3.1 Imperative Programming Languages

If an imperative programming language (such as Fortran or C) is used, then the

task of detecting which statements may execute in parallel becomes a di�cult one. In

fact, one survey [BE92] found that half of the programs in the Perfect Benchmarks suite

[BCK
+
89] were not parallelized due to problems with the structure of the potentially

parallel loops, and the remaining programs achieved speedups averaging 2.5 out of a

possible 8 processors. This poor performance is due to the nature of imperative language

semantics: mutable memory locations, which represent the state of the computation, are

modi�ed by sequentially-ordered program statements, resulting in a program with no

inherent provision for parallelism. This leads to the need for determining which of the

sequential statements can be executed in parallel. For two statements to be executed in

parallel, they must be independent of each other, which means that the execution of one

statement does not e�ect the execution of the other. This \independence" information is

gathered using dependence analysis. If a programmer wishes to use an imperative language

for parallel execution, then either the programmer can perform the dependence analysis

and provide parallelizing statements where applicable (explicit imperative programming),

or a parallelizing compiler can take the programmer's sequential code and attempt to

discover the dependence relations needed to provide automatic parallelization (implicit

parallel programming). Since every imperative program that is to be parallelized must

undergo some degree of dependence analysis, we shall introduce those concepts before

examining the explicit and implicit imperative programming approaches.

Dependence Analysis

Padua and Wolfe identify four types of data dependence [PW86]: 
ow dependence,

anti-dependence, output dependence, and loop iteration dependence. Zima et al. [ZBG86]

refer to the �rst three as data 
ow analysis, and the last as data dependence analysis.

� Flow dependence (or true dependence) occurs when one statement depends on a

value that is computed by a preceding statement. For example, in the code

S1: A := B + C

S2: D := A + 2

statements S1 and S2 cannot be executed in parallel since S2 uses the value of A

computed in S1.

� Anti-dependence occurs when a statement assigns to a variable that is used in a

preceding statement. For example, in the code

S1: A := B + C

S2: B := D / 2

statements S1 and S2 cannot be executed in parallel since S1 uses the value of B

computed before S2, which re-assigns a new value to B.

� Output dependence occurs when two statements assign di�erent values to the same

variable. For example, in the code

S1: A := B + C

.

.

.

S2: A := D + E

statements S1 and S2 cannot be executed in parallel since, if S1 were to execute

after S2, A would contain the wrong value after this code segment.
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� Loop iteration dependence (sometimes called loop dependence) occurs when one

iteration of a loop has a dependence with another iteration of the loop. For example,

in the code

for I in 1 to 3 do

S1: A(I) = B(I) + C(I)

S2: D(I) = A(I-1)

a dependence in the elements of A 
ows from iteration i� 1 to iteration i. end for

It is important to note that anti-dependence and loop dependence are, in a sense,

false dependencies. They arise not because data is being passed from one statement to

another, but because the same memory location is used more than once.

Explicit Imperative Programming

In case of explicit imperative programming languages, the user is not only responsible

for all of the dependence analysis, but also for inserting the parallelizing and synchronizing

statements in the proper place so as to produce a correct and determinate program. Ad-

ditionally, if the target machine is a distributed memory multiprocessor, the programmer

must be concerned with the data distribution and data movement statements. The com-

plexity of the dependence analysis is also exacerbated by the modular style of programming

that is often employed, in which programs are separated into logical subprogram units.

Subprograms encapsulate the details of an operation, limiting the scope and e�ectiveness

of intra-procedural analysis. Additionally, for imperative languages that allow aliasing

(such as Fortran and C), dependence analysis must take a very conservative approach,

often severely limiting its e�ectiveness. The result is a program in which the basic mean-

ing of an algorithm is lost among the various explicit statements needed to specify and

manage the parallelism, and the applications programmer is forced to master the concepts

of data dependence, data distribution, and message passing, in addition to the algorithm

being encoded. In fact, one can draw the analogy that explicit imperative programming

is the assembly language of parallel processing: cryptic and error-prone yet 
exible and

powerful. Still, due to the lack of sophisticated software and the 
exibility of the explicit

approach, many parallel applications have been written to exploit the parallelism of a

large machine using explicit parallelization and synchronization constructs.

Implicit Imperative Programming

In the case of implicit imperative programming languages, it is the job of a very intel-

ligent (and complex) compiler to determine the correct dependence relationships required

for parallel execution, and then to insert the appropriate parallelization and synchroniza-

tion primitives required to successfully execute the program in parallel. A vectorizing

compiler is similar to a parallelizing compiler, but the former restricts its attention to re-

structuring loops for vector execution on a single processor, while the latter concentrates

on a more complete analysis needed for determining parallel execution of tasks on multiple

processors. In either case, dynamic variables and aliasing, as well as the modular style

of programming, often obscure the dependence relations and force the compiler to make

very conservative decisions, which typically result in an under-parallelization (or under-

vectorization) of the program. An imperative language compiler might attempt to remove

false dependencies (such as output dependence and anti-dependence) using various tech-

niques, but, in general, these are di�cult problems and typically done only in a limited
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number of cases. Some compilers attempt to make up for their limited powers by asking

the programmer to annotate the code, such as inserting a parallel \for all" statement in

the place of a sequential \for" statement. However, annotations simply place the burden

of detecting the parallelism back on the programmer (explicit imperative programming),

and if a mistake is made, the resulting program may be a nondeterminate nightmare. De-

spite their di�culties, there have been numerous attempts at automatically parallelizing

imperative languages [FHK
+
90, GB90, HA90, IFKF90, ZBG86, Ree90, RA90]. To the

extent that these compilers have been able to exploit a limited amount of parallelism in

certain types of numerical applications, they have been successful.

The di�culty in getting imperative programming languages to execute e�ciently on

parallel architectures without sacri�cing parallelism or encumbering the user has led to

the investigation into other approaches, most notably object oriented languages [LG91,

CGH89, WY88] and functional programming languages [AGP78, MS82, MSA
+
85].

2.3.2 Functional Programming Languages

Functional programming languages possess several properties that are useful for par-

allel programming:

� Their operational semantics do not over-specify the order of evaluation, which helps

in identifying all forms of parallelism.

� The computation can be represented by a data 
ow graph that exposes all data

dependencies in a program. Data dependence analysis need only focus on loop

iteration dependencies.

� Programs are composed of mathematically sound (side-e�ect free) functions. This

guarantees that the order in which functions are evaluated has no e�ect on the re-

sult of the computation (Church-Rosser property). Therefore, the textual sequenc-

ing given by the programmer does not necessarily de�ne the program's sequencing

constraints, and thus only true 
ow dependence governs the execution order of a

program.

� To preserve the history insensitivity of the applicative programming model [Bac78],

functional languages support only a single assignment
3
of a value or a de�nition

to a variable. This means that variables are simply a notational convenience for

representing mathematical expressions, and thus functional languages are said to

be free of \state." A functional program is then a series of mathematically sound

functions that, when given the appropriate input data, are reduced to a single ex-

pression. Variables in the program represent various stages of the reduction. Thus

A := X + Y binds the value of X + Y to A throughout the scope of A.

These properties result in a language style that helps to identify the available paral-

lelism in a program, rather than helping to obscure it. However, this attractive property of

3Actually, pure functional languages do not support assignment, but we will relax our de�nition of

functional languages to include single-assignment languages, such as Sisal and Id with I-Structures. Since

both functional and single-assignment languages operate under the applicative model of computation, they

are often labeled applicative languages.
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implicit parallelism does not come for free, as we will see in the next section. For example,

functional languages are traditionally slow due to the problems in maintaining the single

assignment semantics of the language, especially with respect to structured data. We will

brie
y examine two languages that are currently being used to take advantage of the new,

high-performance parallel architectures: Sisal [MSA
+
85, BCFO91] and the family of Id

languages (Id, Id Nouveau, Id90) [Nik87], to which we will cumulatively refer to as Id.

But �rst we shall examine the issue of strictness, since this seems to be a major battle

line for current functional languages [Got91].

The Issue of Strictness

The distinguishing feature of strict semantics is that arguments to procedures and

data constructors are completely evaluated before the procedure body or data constructor

is invoked. On the contrary, in non-strict functional languages, array elements may be

read before the entire array is initialized (non-strict data structures), and a function may

be evaluated and possibly even use a returned value before all of its input parameters

have been evaluated (non-strict control structures) [Tra91]. This gives a non-strict func-

tional language more expressive power than its strict counterpart, since there are some

dependencies that are impossible to construct in strict functional languages. For example,

consider the following functional code segment that generates a circular list:

{a = cons 1 (cons 2 (cons 3 a)); in a}

In order for this program to work correctly, the application of a in the de�nition of a must

remain unevaluated until the end, at which time it establishes the circular link to the

head of the list. In a strict functional language, this would either deadlock (waiting for a

de�nition of a) or report an error that a was referenced before it was de�ned. In another

example, we see how non-strictness can be used to control a possibly in�nite amount of

computation:

{ints_from n = cons n (ints_from (n+1)); in nth 10 (ints_from 1)}

In this program, the function ints from creates a list of integers from n to in�nity, how-

ever, the body of the program only needs a list from 1 to 10, since the nth function

simply returns the nth element of a list. Again, for a non-strict language, the evaluation of

ints from n can be delayed until it is known that only 10 elements are needed, while in

the strict case this computation results in in�nite recursion. For a more formal treatment

of non-strictness, the reader is encouraged to examine [Tra91].

The expressiveness of a non-strict functional language is not without its drawbacks.

Since non-strict languages can only generate a partial ordering of subexpressions at compile

time, the compiler is forced to create a set of threads, which must then be ordered at

runtime using presence bits to start a thread when the value it computes is needed by

another thread. The result is that not only are presence bits required for synchronization,

but that the resulting thread length is small. On the other hand, a strict language compiler

is capable of generating a total ordering (i.e. a sequential program) at compile time.

This not only allows for greater control over the thread size needed for e�cient parallel

execution, but also alleviates the need for presence bits. The result is that strict languages

are better suited for execution on conventional von Neumann-based architectures.

Another issue relating to non-strictness is its e�ect on resource management. We

can view a parallel computation as a tree of tasks or activations. A fully-eager, data-

driven approach to evaluating the activation tree results in a breadth-�rst unfolding of
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the tree, so that at some point the entire tree must be resident in the system, probably

swamping the system's resources. Therefore, the job of a resource manager is to unfold

the activation tree in such a way as to e�ectively utilize the available resources, but not

swamp them. The resource manager receives requests for new activations and must decide

which activations to start, and when to start them. This is a di�cult decision, based on

the current load of the system and, in the case of non-strict languages, the interactions

among the threads. This interaction can cause the system to deadlock, since withholding

resources from one part of the activation tree may starve the activations in another part

of the tree. For this reason, most non-strict functional languages restrict the attention

of the resource manager to a certain type of simple loop bodies that can be executed in

parallel [Cul90]. In a strict functional language, the lack of activation interaction means

that the job of a resource manager is greatly simpli�ed [BT88b].

The way in which functional languages deal with this issue in
uences many of their

implementation characteristics, as we will see in a brief examination of Sisal (a strict

functional language) and Id (a non-strict functional language).

Sisal

Sisal (Streams and Iterations in a Single Assignment Language) is an applicative

language that supports data types and operations for scienti�c computation [MSA
+
85].

The Sisal language was designed with the following goals:

� Goal: A general-purpose functional language. Fact: Sisal has proved to be an ef-

fective language for solving many scienti�c applications [Can92], though its current

implementation has yet to take advantage of the functional parallelism that is pre-

dominant in some applications. Also, the usefulness of Sisal outside of the scienti�c

application realm has yet to be established.

� Goal: A language whose programs are always determinate, which means that the

output from a program is independent of the execution order of the program. Fact:

Determinacy is achieved by the functional semantics of Sisal.

� Goal: Execute on both conventional and novel architectures. Fact: Sisal executes on

both conventional [CO88, Can92, LSF88] and novel [BS89] multiprocessor architec-

tures, as well as most Unix-based uniprocessors. There is also ongoing research in

hierarchical-memory [WFC91] and distributed memory [Gri90, HB92] Sisal imple-

mentations. The functionality of the language allows for an intermediate represen-

tation as a data 
ow graph, which can then be executed on a data
ow architecture,

such as the Manchester Data
ow Machine [BS89]. For conventional implementa-

tions, Sisal de�nes arrays using strict semantics. The result is that a sequential

evaluation order of array references is always possible, alleviating the need for pres-

ence bits.

� Goal: Compete with the sequential and parallel execution performance of imperative

languages. Fact: For some scienti�c applications, Sisal is very competitive with For-

tran (and C) on many conventional multiprocessor and vector architectures [Can92].

This is made possible by the use of strict data constructors, which can be analyzed

at compile time to possibly eliminate the need for copying arrays at runtime [Can89].
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Thus Sisal is an applicative language that, because of its strict semantics, has been ef-

�ciently executed on conventional multiprocessor hardware, without the need for hardware

synchronization (presence bits). However, Sisal sacri�ces a certain amount of expressibility

in achieving this goal. For some, this sacri�ce is justi�ed, but for those people that require

the expressibility that a strict language cannot provide, Sisal's e�ciency is irrelevant.

Id

Back when data-
ow didn't work so well, it

seemed a lot more elegant!

{ Allan Gottlieb

The Id language [Nik87] exempli�es the tension that can arise between using a purely

functional language and supporting e�cient execution. At Id's core is a purely functional

language that supports non-strict semantics, but surrounding the core is a more com-

plete, non-functional language that supports imperative data structures, accumulators,

and non-determinism [AG89b]. Adding these non-functional features to Id was done to

improve the programmability and performance of Id for scienti�c and real-time applica-

tions. Implementations of Id exist for novel architectures [Den80, Tra86, PC90], and for

conventional architectures using a software interface to handle the non-strictness of the

language [CSS
+
91].

One area of ine�ciency caused by the purely functional core of Id is data structure

handling. The functional operators for creating and manipulating data structures are cons

and update, respectively, which treat all data structures as lists. The cons constructor

builds data structures, arrays for example, by creating incrementally-larger arrays until

the array size is achieved. This results in a large number of unused intermediate arrays.

The update constructor alters a data structure by creating a new copy of the array, with

the updated value in place of the old value in the new data structure. An I-Structure

[ANP89] is a single-assignment data storage mechanism that replaces the cons constructor

for creating arrays, and represents Id's �rst departure from the purely functional world.

This is because the I-Structure arrays can be allocated in one operation and �lled using one

or more separate operations, whereas a functional implementation allocates and �lls the

arrays in one operation. Rather than treating arrays as lists, the I-Structure mechanism

allocates enough space (from the I-Structure storage) for the array at one time using the

allocate operator. The array is initialized by writing directly into the elements of the array

using the I-store operator. Note however that an array element can only be written to

once, and if an I-store �nds that a location is already occupied by a value, an error occurs.

Another feature of I-Structures comes from reading the arrays using the I-fetch operator.

Each element of I-structure storage contains presence bits that inform an I-fetch whether

or not the value it requires has already been written. If not, the I-fetch operator will

block until the write occurs. This self-synchronizing feature of I-Structures is needed to

implement the non-strict semantics supported by the language. However, I-Structures do

not solve all of the problems of a functional language. There still remains the problem

of the need for copying data structures in the update operator, and the larger problem of

state. Since functional languages are without state, it is impossible to e�ciently implement

accumulators, which are typically used for creating a histogram. Thus we see the addition

of another non-functional feature to Id: accumulators. Id accumulators take the form of

a Fetch-and-Op without the Fetch. That is, they atomically accumulate a value without
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returning its result. With accumulators, a deterministic data-
ow solution is possible

that closely mimics the multiprocessor solution but avoids the space and time penalties of

traditional single-assignment data structures. Determinacy is maintained by specifying,

upon creation of the accumulator, how many accumulations are necessary before the result

may be read. A fetch of the accumulator value then blocks until the accumulator has

reached its prescribed limit. To solve the problem of state in a more general manner, and to

eliminate the need for making copies of data structures, the next layer of Id introduces M-

Structures [BNA91], which are mutable (i.e. imperative) I-Structures. Like I-Structures,

every M-Structure element contains a number of presence bits, but unlike I-Structures,

the addition of a state bit allows for synchronized mutation of the elements. The put

operation places a value into an M-Structure element whose state is empty, resetting the

state to full, and the take operation removes a value from an M-Structure element whose

state is full, resetting the state to empty. Since the state bit does not contain enough

information to allow for more than one update to an element, the language is augmented

with a barrier operation that allows for explicit synchronization of the program. Though

very well de�ned and controlled, the use of M-Structures takes Id into the imperative

model of computation.

Though the additions to the Id core take Id further from its functional beginnings,

they are deemed necessary for an e�cient implementation of the language that will support

scienti�c and real-time applications.

Sample Problems in Sisal and Id

Before we present two problems that highlight the di�erences between a strict func-

tional language (Sisal) and a non-strict functional language (Id), we shall brie
y discuss

some of the measures by which parallel computations are compared. A parallelism pro-

�le (see Figure 2.3) gives us the amount of parallelism, over time, that is available to be

exploited, given an in�nite number or processing elements. Parallelism pro�les are useful

tools for measuring parallel algorithms, yielding the following measurements:
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Figure 2.4: Work required for matrix multiply

� Total work, which is the total number of operations that have to be performed in

order to complete the algorithm, and is represented in the parallelism pro�le as the

area under the parallelism curve.

� Peak parallelism, which is the largest number of processors that would ever be needed

to satisfy the parallelism of the algorithm, and is represented in the parallelism pro�le

as the maximum in the graph.

� Average parallelism, which is the average amount of parallelism that exists over the

span of the critical path length, which is represented in the graph as the ratio of

total work to critical path length.

� Critical path length, which is the minimum amount of time needed to complete the

algorithm given an in�nite number of processors, and is represented in the parallelism

pro�le as the length of the graph.

Using these measures, it is now possible to compare parallel algorithms for e�ciency.

The �rst problem we consider is Matrix Multiplication, C = A � B, where A, B and C

are each 2-dimensional matrices. For each element C[i; j], we compute the inner-product

A[i; �]� B[�; j]. Given that there are O(n2) elements in C, and assuming the creation

of each element in C requires O(n) computations, the total work to compute C is O(n3).

Assuming that the inner product is performed sequentially, the critical path length of the

algorithm is O(n), and the average parallelism is therefore O(n2). A graphical representa-

tion of the work done in matrix multiplication is depicted in Figure 2.4, where the creation

of A and B requires O(n2) work and the computation of C requires O(n3) work.

The strict semantics of Sisal state the the creation of A and B be complete before

the computation of C can begin. This allows the resource manager to allocate up to

O(n2) processes for the computation of C without the possibility of deadlock, regardless

of the number of processors allocated to execute the O(n2) processes. Conversely, the

non-strict semantics of Id allows the resource manager to allocate up to O(n2) processes

to complete the O(n3) work, representing the creation of A and B, and the computation

of C. However, most of this work, represented by the computation of C, cannot be

immediately completed, being blocked until their input values are available. This results

in a competition for resources between the processes creating A and B and the processes

computing C. Assuming that there are not enough processors to accommodate all O(n2)

processes (which is a good assumption for n > 100), the resource manager must wisely

select which processes are to be executed �rst, else the system could easily deadlock. For

example, deadlock will result if the processes computing C are assigned to processors
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Figure 2.5: Parallelism pro�le for Wavefront

before the processes creating A and B. Unfortunately, the resource manager cannot

distinguish among the various processes, so another scheme is necessary to safeguard

against the possibility of deadlock. Current implementations of Id employ a resource

management strategy called k-bounded loops [Cul90] for only releasing a limited number

of processes into the system, but only works for well-de�ned loops with left-to-right data

dependencies. This example demonstrates the problems of non-strictness when faced with

a limited amount of resources, as all real systems are.

The second problem we consider is Wavefront, in which some elements of a matrix

are de�ned in terms of other elements. A sample Wavefront problem is to build a matrix

A de�ned as:

A[1; �] = 1

A[�; 1] = 1

A[i; j] = A[i� 1; j] + A[i� 1; j � 1] +A[i; j � 1]

Note that the left and top edges of the matrix are all 1, and the other elements are

computed using neighbors to the left and above. Thus the parallel computation proceeds

in a \wavefront" from the top left to the bottom right. Since there are O(n2) elements

in the wavefront to be computed, and each computation requires O(1) steps to compute,

the total work is O(n2), with an average parallelism of O(n) (see Figure 2.5). While it

is possible to program this problem in Sisal to achieve the total parallelism possible, it

cannot be done in a straightforward manner, since Sisal does not allow for recursive array

de�nitions. Here we see the limitation of strict languages in expressing a rather simple,

and often used, data dependence. The Sisal implementation therefore is a \back-door"

approach that uses streams, Sisal's version of producer-consumer parallelism, to create

the matrix in a row-wise manner. Id, on the other hand, has no problem in expressing

this problem exactly as it was de�ned, since recursive array de�nitions are possible in

a non-strict language. This simple problem demonstrates the power of expressibility in

a non-strict functional language. However, Id still has the same resource management

di�culties when it comes to executing this problem. O(n2) processes (for computing the

matrix values) are released into the system, but only O(n) of them are capable of executing
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Figure 2.6: The spectrum of parallelism

in parallel (as we can see from the parallelism pro�le in Figure 2.5). Therefore, not only

are system resources wasted, but the possibility of deadlock (a much more serious problem)

still exists.

2.4 On Managing Parallelism

The type of parallelism that is exposed implicitly by a language or compiler, or explic-

itly by a programmer, will determine how the parallelism is to be managed. Granularity

refers to the size of the schedulable unit of parallelism, called a grain, and as we see in

Figure 2.6, there is a spectrum of parallelism (i.e. grain sizes) possible:

� Program level parallelism occurs when an operating system executes several pro-

grams in parallel, often called multiprogramming [PS85]. Each program is instanti-

ated as a process, and the operating system schedules all of the available processes

according to some scheduling scheme, such as round robin with multilevel feedback,

as is done in the Unix operating system [Bac86]. For program level parallelism,

the granularity is very coarse (i.e. large grains), and the complexity of each grain

in unbounded, which makes scheduling decisions di�cult since the scheduler has no

idea how long a process will execute. This means that scheduling must be done at

runtime (dynamic scheduling) rather than at compile time (static scheduling).

� Procedure or loop level parallelism occurs when a programmer (or compiler) decides

that two loops (or procedures) can safely execute in parallel, or that di�erent itera-

tions of the same loop may safely execute in parallel. In the case of parallel loops,

we call this data parallelism, and in the case of parallel procedures, we call this func-

tional parallelism. In both cases, the complexity of each grain is still unbounded,

and so dynamic scheduling is necessary.

� Thread level parallelism occurs when the grain size is a basic block. Since basic

blocks do not contain loops (by de�nition [ASU86]) their complexity is bounded

and scheduling becomes more manageable. If the threads are allowed to encompass

long-latency operations, such as read and write, then we de�ne them as blocking

threads. This is the case with the threads used in the current multiprocessor-based

implementation of Sisal [Can92]. Threads which are not allowed to encompass long-

latency operations are de�ned as non-blocking threads. This is the case with TAM

[CSS
+
91] threads.
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� Instruction level parallelism occurs when individual instructions are identi�ed as

being able to execute in parallel, such as in �ne-grained data
ow [BS89] and super-

scalar architectures [Fis87, RYYT89]. The granularity is very �ne at this level, which

can result in a large amount of parallelism, potentially causing runtime overhead.

There are techniques that can be implemented to reduce this overhead. Fine-grained

data
ow machines often employ a throttling technique [RS87] to match program and

machine parallelism, and superscalar architectures often rely on compiler assistance

in locating and scheduling the parallelism [Fis87].

The di�culty in managing the exposed parallelism, with respect to scheduling and

load balancing, decreases as the grain size decreases, but the synchronization overhead in-

creases as the grain size decreases (see Figure 2.7). This relationship is re
ected in Sarkar's

parallelism vs. overhead graph [Sar89], in which the \ideal" granularity is expressed as

the intersection of the decreasing overhead curve and the increasing granularity curve.

Multi-threaded computation is an attempt at realizing this \ideal" granularity, which for

our spectrum of grain sizes, falls somewhere between blocking and non-blocking threads.

For the remainder of this discussion, we restrict ourselves to this level of granularity (the

pebbles depicted in Figure 2.7).

Once we have decided on a granularity and exposed it in the program, we are faced

with the scheduling problem: assign the tasks that result from partitioning the program

(i.e. exposing the parallelism) to the available processors so as to minimize the parallel

execution time. In general, task scheduling is an NP-complete problem, and the reader

is referred to [Sar89] for a more detailed study of the problem and its application to

multiprocessors.

Data Distribution

Related to the problem of task scheduling is the problem of data distribution. Infor-

mally, the problem of data distribution is to divide the data structures that a program

uses among the memory elements so as to minimize certain desired measures, such as total
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execution time or number of remote references. For a shared memory multiprocessor, this

is a trivial task. Since, by de�nition of shared memory, placement of a data structure does

not e�ect performance, the data structures can be allocated (or distributed) anywhere

among the shared memory modules. However, for non-shared memory multiprocessors,

such as distributed memory multiprocessors and NUMA architectures, data distribution

becomes a more serious and complex problem, but one that must be addressed if reason-

able performance is to be achieved. There are two important points to be made about

data distribution for a distributed memory multiprocessor:

1. The time required to access local memory is typically orders of magnitude less than

the time to access remote memory. Therefore, assuming no attempt is made to

tolerate the latency, optimal execution time occurs only when all data references are

local. However, this is clearly not possible. For example, every processor may need

every element of a data structure. If the data structure is to be distributed, then

clearly some processors will not have local access to the elements they need. Another

problem occurs when the reference pattern is unknown at the time of distributing

the data. Also, some interconnection networks (e.g. ring) have faster access times

to neighboring nodes than to distant nodes. For these non-uniform access machines,

non-local data references should be on neighboring nodes as opposed to distant

nodes. Again, this is not always possible.

2. The principle of locality states that memory references are grouped together in both

space (spatial locality) and time (temporal locality). This implies that if we reference

a particular data item, then there is a good probability that we will issue a reference

for the same data item very soon (temporal locality), or we will reference another

data item that is physically close to the original reference (spatial locality).

If we combine these points, then we have the outline for a data distribution scheme:

� Determine the access pattern.

� Distribute the data so as to maximize the local references.

� Distribute the non-local references so as to maximize the neighboring references

(only if there is a discrepancy between neighboring and distant access latencies).

� If a reference is remote, then attempt to make subsequent accesses to this reference

local, or attempt to make subsequent references to related items local, or both.

This distribution scheme takes advantage of the observations that were made about

the behavior of distributed memory multiprocessors and their programs, but does not

address the feasibility of the approach. Of the assumptions made, the ability to determine

access patterns is by far the most idealistic. This is re
ected in the current alternative

methods being used for distributing data structures:

� The compiler controls the distribution of data structures. The idea is to distribute

the data structures according to some distribution function, and then to analyze the

array subscripts to determine whether or not, for a particular thread, a given refer-

ence is local or remote. If the reference is remote, the the appropriate communication

primitives are generated to retrieve the value at runtime. The distribution functions

are formalized so that a compiler can make use of them, and this formalization is
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equally useful when considering other approaches. Although some systems present

formal analysis that attempts to determine the best distribution from analyzing

the access patterns [OH92], most parallelizing compilers use user-supplied distribu-

tions, either in the form of language extensions or pragmas (compiler directives)

[HKT92, ZBG86].

� The compiler controls the distribution with the help of run-time pro�les [Sar89].

Again, this approach attempts to help the automated distribution process, but rather

than have the programmer tell the compiler how the data will be accessed, the

compiler simply \watches" several characteristic runs and notes the distribution

patterns used for those runs. The compiler then selects a distribution function that

will come closest to this observed reference behavior. The advantage this approach

has over the pragmas is that the programmer may be unaware of the reference

pattern, and thus be unable to help with the distribution. The disadvantage is that

if the pro�led runs are not characteristic of the actual reference patterns, or if the

reference patterns vary with the input data, then this approach may be misleading.

� The programmer controls the distribution explicitly. Since all of the above techniques

require intelligent compilers that are not always (or often) available, a common

technique for distributing data is for the programmer to explicitly distribute the

data and then insert the appropriate communication primitives into the source code,

all \by hand." Though this approach requires very little software support (only the

message passing interface is needed), the user is required to determine the access

patterns and then distribute the data accordingly using explicit message passing

primitives. Clearly this contradicts the e�orts of raising programming to a higher

level of abstraction.

Two Fundamental Issues, Revisited

Having introduced the concepts of tasks, scheduling, and data distribution, we take

another look at the issues of latency and synchronization, and the possibility of trading

parallelism for latency. We examine a software approach to addressing the two funda-

mental issues of multiprocessing: the idea of avoiding latency using intelligent mapping

functions for tying task distribution to data distribution, and the idea of hiding latency

by overlapping parallelism with latency.

TAM and Id

Dave Culler et al. [CSS
+
91] present a compiler-based approach to tolerating latency

called the Threaded Abstract Machine (TAM). TAM provides an execution model for the

�ne-grain parallelism (non-blocking threads in our spectrum) that is generated by the

non-strict language Id. The basic concept is that synchronization, scheduling, and storage

management are placed under compiler control by making these operations explicit in

the instruction set. TAM provides software support for I-Structures so that the actual

hardware does not require presence bits. TAM also implements a software multithreading

scheme that switches threads whenever a long latency operation is encountered. This

requires that the task switching incur a minimal overhead, which is accomplished by using

very lightweight threads that carry little context with them. Since the initiation of a split-

phased transaction do not block a thread, it is possible for the compiler to determine how
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long each thread will execute, and thus is able to perform the scheduling at compile time.

Preliminary measurements show that the approach is feasible, but due to the software

implementation of I-Structures and multithreading, and the small size of the threads,

the overhead is currently too great to compete with imperative language counterparts

executing von Neumann code.

2.5 Proposed Research

Our research focuses on the feasibility of providing runtime support for a distributed

memory implementation of a strict functional language. Our approach centers on a run-

time system that copes with the two fundamental issues of multiprocessing by providing

the following services to the compiler:

� Various task distribution schemes that allow for the e�cient distribution and reduc-

tion of large and small numbers of tasks among a variety of processor con�gurations.

� The ability to tolerate latency by providing software support for multithreading.

� A single addressing space to support the shared memory model of computation that

the Sisal compiler assumes to exist.

� The ability to avoid latency by providing a rich set of data mapping functions that

allow for data and tasks to be aligned so that remote memory references are mini-

mized.

The VISA runtime system is designed as the culmination of these goals and, more

importantly, as a vehicle for studying the e�ects of latency avoidance and latency tolerance

on strict functional-language applications running on conventional distributed memory

multiprocessor architectures. Though it may be attractive to implement these ideas either

in the compiler or by using special-purpose hardware, a runtime approach has several

advantages:

� Runtime information and adaptability. A compiler can produce fast code that avoids

latency when it can deduce the access patterns and thread lengths of a program.

However, this information may not be available until runtime parameters have been

processed. Also, many \adaptive" applications change their access patterns and data

locations over their execution lifetime, making the overhead of current compiler-

based solutions intolerable [KM91]. For this set of applications, compiler-based

approaches o�er little practical support. A runtime system approach can utilize

dynamic information in generating task and data mappings, as well as adapt to

changing access patterns.

� Machine and language independence. Programmers have long been aware that the

language design has a signi�cant impact on how easily an algorithm can be trans-

formed into working code. Even the so-called \general purpose" languages are rec-

ognized as being suited for certain problem solving approaches. The transformation

process is more tedious and error prone when the conceptual models supported by

the language relate only peripherally to the problem-solving model of the program-

mer. Thus, the need to support various languages is real [PB90]. A runtime system
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can be both machine and language independent. This o�ers the advantage of be-

ing able to re-use the concepts of latency avoidance and tolerance for a variety of

machines that do not support these features directly, and for languages that rely on

them.

� Short development time. By implementing these facilities in software, we can mea-

sure their e�ectiveness on a variety of sample applications in a relatively short period

of time, as compared with a long hardware development time.



Chapter 3

RELATED RESEARCH

If you steal ideas from one source, that's pla-

giarism, but if you steal ideas from more than

one source, that's research.

{ Laurendo Almeida, Brazilian guitarist.

In this chapter we examine some of the related research that not only pertains to

ours, but helps to de�ne it. We start by examining related multithreaded architectures,

whose primary goal is a hardware solution to the two fundamental problems. Next we

examine message passing abstractions that help to de�ne the abstraction implemented in

VISA. Finally we survey other approaches that provide for a shared memory programming

paradigm, including those implemented at the language level, the operating system level

(DSM), and the hardware level.

3.1 Multithreaded architectures

Multithreaded architectures embody the belief that hardware support is needed to

e�ciently handle the switching and synchronization of lightweight tasks, which is necessary

for tolerating the large latencies found in all large multiprocessor systems. The basic idea

behind all multithreaded architectures is to run threads of sequential code through a fast

von Neumann processor, but to schedule and synchronize the threads using a data-driven

approach, as is done for individual instructions in �ne-grain data
ow machines.

3.1.1 *T

The *T architecture [Bec92] focuses on designing a processor node that will serve

as the building block for a massively parallel machine, with hardware support for mul-

tithreaded execution. The *T is centered around the Motorola 88110MP, which is a

customized version of the Motorola 88110 Symmetric Superscalar microprocessor that in-

cludes hardware support for �ne-grain communication and synchronization. The 88110MP

instruction set is a superset of the 88110 instruction set, including message transmission

and reception instructions, microthread scheduling instructions, and processor con�gura-

tion instructions. The result is a processor design that hopes to support a threaded model

of computation without sacri�cing sequential execution speed.

The *T utilizes a register-set model of networking, similar to the J-Machine [DCF
+
89]

except that *T messages are limited to 24 words so that the entire message can be placed

into registers for transmission or upon reception. A set of send and receive registers for

storing outgoing and incoming messages, and a few special-purpose processor instructions

provide a minimal message passing interface that can be customized to �t a variety of

message passing models.
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Multithreading in the *T is supported by the microthreading model, which de�nes a

thread as non-blocking code fragment. Normally suspensive operations, such as remote

access and synchronization operations, are expressed in terms of split-phased instructions,

where one thread initiates the operation and arranges to schedule another thread to handle

the completion of the operation. This non-blocking model allows for *T to employ a sim-

ple microthread stack for storing microthread descriptors ready to execute, providing an

extremely fast thread-switching mechanism. Microthreads which are designed to handle

messages are termed message handlers (\inlets" in [CSS
+
91]), and microthreads designed

to perform computations are called computation microthreads (\threads" in [CSS
+
91]).

Special 88110MP instructions support the creation (fork), scheduling (post), and syn-

chronization (cfork, cpost) of microthreads. To avoid expensive interrupts, the rxpoll

instruction can be used to check for incoming messages and, if a message is present, move

the message into the receive registers and schedule a message handler to process the mes-

sage.

The *T architecture represents a direct approach to marrying the strengths of von

Neumann and data
ow architectures. Latency tolerance is supported at the hardware level

through the use of specialized processor instructions that provide a minimal interface

to the network and hardware support for thread creation, scheduling, synchronization.

The result is an architecture that will attempt to e�ciently execute a wide spectrum of

programs written for a variety of computational models, from data
ow to data parallel.

3.1.2 The Denelcor HEP and Tera Computer Systems

Burton Smith has designed several machine architectures, among which are the Denel-

cor Hep [Smi85] and the Tera Computer System [AAC
+
91]. Both are multithreaded ar-

chitectures that provide hardware support for replicated processor states and split-phased

transactions, with the goal of masking long latency operations by e�ciently switching

among threads. All registers and memory locations contain presence bits for �ne-grain

synchronization, and all accesses can choose to test them. In order to e�ciently switch

among the currently executing threads, the HEP and Tera both use the technique of repli-

cating the processor state (i.e. registers) so that a context switch does not have to save

and restore (\spill") registers, and thus is very fast. The threads are interleaved using

a pipelined processor. The Tera system guarantees that the results of arithmetic and

conditional operations are available to the next instruction in the thread, and memory

operations are handled through an explicit dependence lookahead �eld in the instruction

(assuming that the compiler can set the �elds properly). The memory system on both

machines is physically distributed, though Smith claims that these machines are shared

memory machines: The placement of data in the system does not a�ect the performance

of the related application. For the HEP, all memory is global, and a thread making a

memory request is removed from the pipeline and placed in a waiting area until the mem-

ory request has been satis�ed. Each processor is capable of supporting up to 64 threads,

which turned out to be too few for keeping the processors busy so that all memory latency

is hidden.

The Tera represents an attempt to improve upon the HEP design, and to create a

machine that has hardware support for many forms of parallelism (heterogeneous paral-

lelism). The thread count was increased from 64 to 128 threads per processor, the pipeline

problem was addressed using the explicit dependence �eld of the instruction set, and the

use of local memory caches helps in the execution of threads that exhibit a strong degree
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of locality. Tera employs two \close" memories that can be used by the compiler to avoid

accessing global memory. This local memory is often used to store register spills and

thread stacks. Tera also associates four tag bits with each memory location and register

(as opposed to 1 presence bit in the HEP): a forwarding bit, a full/empty bit, and two

data trap bits. The full/empty bit is used in conjunction with the data trap bits to form

several modes of access, including normal, in which the full/empty bit is ignored, future,

in which reads and writes occur only if the full/empty bit is full, and synchronized, which

is similar to the HEP operation: read only on full and set empty, and write only on empty

and set full. Tera also supports various levels of parallelism, including very �ne-grained

(via the instruction pipeline), �ne-grained (loop level parallelism), medium-grained (more

than 100 instructions grouped into a \chore"), and course-grained (multiprogramming

various tasks).

The HEP and Tera architectures both represent the desire to hide the e�ects of

latency and synchronization by using special-purpose hardware and complicated compilers,

whose job it is to identify and exploit the various levels of parallelism that exist in most

applications. Though the HEP fell to the wayside for various economic and scienti�c

reasons, it nonetheless represents the �rst attempt at providing hardware support for

multithreading. The Tera Computer System hopes to alleviate the HEP shortcoming

by providing an improved set of hardware for supporting multithreading, and a very

intelligent compiler that can take advantage of the many forms of parallelism that the

Tera architecture is equipped to handle.

3.1.3 EM-4 and EM-5

The EM-4 and EM-5 [SYH
+
89, YSH

+
89] are multithreaded machines designed at

the Electrotechnical Laboratory (ETL) in Tsukuba, Japan. The EM-4 node contains an

Input Bu�er, a Fetch and Add Unit, and an Execution Unit, all in a single VLSI chip

[SYHY87]. This has the advantage of not incurring o�-chip delays when dealing with the

data
ow processor, but the disadvantage of being a very specialized chip. Rather than

using a simulation, the EM-4 designers have built an 80-node prototype for testing and

evaluation. As for the abstract machine, the EM-4 uses the concept of threads (called

strongly connected blocks in EM-4 terminology) to represent sequential blocks of code

that are to be executed using a von Neumann-style processor, but that are switched and

scheduled using a data
ow-style matching approach. The EM-5 design is an advanced

design of the EM-4 that is capable of supporting up to 16K processors, with an estimated

peak processing rate of 3.2 tera
ops. The EM-5 design is scheduled to be completed

in 1993, and a �rst prototype is scheduled for March of 1994. Both systems are being

targeted for a number of programming models, including imperative, object oriented, and

functional.

3.2 Message Passing Systems

A shared memory multiprocessor uses the shared memory to exchange data among

the processors, and can use semaphores and monitors for mutual exclusion and synchro-

nization. However, when we move to a distributed memory machine, message passing

is used for both information exchange and synchronization. Information is exchanged

when one processor sends a message to another processor, which is required to receive

it [Tan87]. This characteristic in message passing that \things have to be said twice"
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makes programming often complicated and error prone. However, like the traditional goto

statement, send and receive are very powerful and 
exible statements from which other

communication primitives can be built. For example two additional system calls, built

from the send primitive, are broadcast, in which the message is sent to every other proces-

sor, and multicast, in which the message is sent to a subset of the remaining processors.

Additionally, the message passing primitives can typically operate in either blocking or

non-blockingmode. In blocking mode, a send will wait until the corresponding receive has

been initiated, and likewise the receive will wait until the corresponding send has been

initiated and the data arrives. This provides for implicit synchronization among the com-

municating processes. In non-blocking mode, both send and receive return immediately

after posting their requests to the network. For the send, this just means that the sending

process is not sure when (or if) the corresponding receive is initiated. For the receive, if

the receive request is not immediately satis�ed when the system call is made (i.e. the data

to be read was already there), then the call returns and the process must poll the commu-

nications port for the desired message to know when it arrives. Some operating systems,

such as Vertex [nCU90a], provide a message polling capability so that the process does

not have to explicitly poll for the message. When the message does arrive, the operating

system will issue an interrupt to the process on behalf of the message.

3.2.1 The Reactive Kernel

The Reactive Kernel [SSS88] is an operating system kernel that provides the user

with a standard message passing abstraction, hiding some of the unnecessary details of

communications from the user. The abstraction supports a non-blocking send and both a

blocking and non-blocking receive. The non-blocking send simply places the message into

the network and returns. The blocking receive waits for a message that matches its key,

thus blocking the processor from proceeding. This version of the receive is used for syn-

chronization purposes. The non-blocking receive returns immediately, either succeeding

if the desired message was already waiting, or failing of the message has not yet arrived,

making no attempt to re-try the receive operation (i.e. polling). Thus it remains the

programmer's responsibility to poll for a message.

3.2.2 Active Messages

Active Messages [vECGS92] focuses on providing a minimal message passing interface

that utilizes a split-phased approach to message passing, rather than the traditional send

and receive operations. In the traditional approach to message passing, the send and

receive operations can be either blocking (synchronous) or non-blocking (asynchronous)

operations. Blocking operations eliminate the need for intermediate copies since bu�ering

is not needed, but both network and processor utilization su�er as a result. Non-blocking

operations increase the network and processor e�ciency by relaxing the synchronization

restrictions, but require that the message be bu�ered since there is no guarantee that it

will be immediately handled on the receiving end.

Active Messages attempts to combine the bene�ts of each approach, namely high

processor and network utilization without intermediate bu�ering. In addition to data,

a message contains a pointer to the handler that will process the message upon arrival.

As opposed to a remote procedure call (RPC), the role of a handler is not to perform

computation on the data, but rather to get the data out of the network so that bu�ering
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Figure 3.1: Split-phased active message operations

at the destination is not necessary. Using active messages, message passing primitives can

now be expressed as split-phased remote memory references (see Figure 3.1). Put copies

a local memory block into a remote memory at an address speci�ed by the sender. A

handler in the put message will take care of placing the data in the proper place on the

remote node. Thus the thread can continue operation while the remote handler takes care

of placing the datum in the speci�ed location. Get retrieves a block of remote memory

and makes a local copy. The local handler sends a message to the remote processor,

specifying the memory location desired and the location of where to place the datum

when it returns. Again, the operation proceeds and the remote handler sets up a put

message that will subsequently reply with the requested information. Both operations are

non-blocking and are handled asynchronously by the remote processors.

3.3 Supporting the Shared Memory Programming Paradigm

Central to this thesis is the support of the shared memory programming model on

top of a distributed memory architecture, commonly referred to as a distributed shared

memory (DSM) or virtual shared memory (VSM) system. Two important issues must be

addressed when designing a shared memory abstraction:

� Coherence. Most DSM systems provide replication of data to increase availability

and, if the replicated data is mutable, the system must provide a means to ensure

coherence (consistency). There are two levels of consistency that are often supported:

strong consistency [CF78], which de�nes a sequential ordering of memory references

that ensures a consistent view of memory at all times, and weak consistency [DSB86],

which requires that a memory system be coherent only at synchronization points.

If coherence is necessary, then a coherence protocol is employed to guarantee the

desired level of consistency. Broadly, these protocols can be classi�ed into three

approaches:

{ Write-broadcast: Also known as write-update, this policy updates all copies of

the mutable data item for each write.
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{ Write-invalidate: The data item is updated, and all other copies are marked as

invalid so that subsequent attempts to read them will force replacement.

{ Lock-based: In this approach, reads and writes are preceded and succeeded by

lock request and releases.

� Granularity. Every DSM system must choose some level of granularity at which

the shared memory is supported. The granularity of a coherence strategy is the

unit size of a \cacheable" block of data. In a cache system the unit of granularity

is called a block or line, and in a virtual memory system it's called a page. Since

the granularity of accesses in DSM systems may preclude using true shared memory

primitives (such as test-and-set), alternatives are often provided that take advantage

of speci�c implementation details of a DSM system.

DSM approaches can be categorized by the level that implements the shared memory

abstraction.

3.3.1 Language-Based Approaches

At the language level, compilers and runtime systems implement a shared addressing

space by o�ering the programmer the use of a limited set of shared data structures,

typically arrays. The distribution of these data structures is based on information retrieved

from reference analysis (fully-automated), pro�ling (partially-automated), or user pragmas

(manually-automated). When an element is to be accessed, its location is determined

and, if remote, padded with communication primitives to get (or put) the datum. The

granularity at the language level is typically that of the individual data structure, which

allows for greater 
exibility in the distribution mechanism. Coherence is typically not an

issue since either the compiler doesn't support replicated data structures, or coherence is

controlled by ordering access to the data.

� Fortran D [FHK
+
90, HKT92] is a version of Fortran that provides language ex-

tensions for specifying both the problem mapping, which speci�es how arrays should

be aligned irrespective of the underlying architecture, and machine mapping, which

speci�es how the arrays should be distributed onto the actual parallel machine. The

language extensions DECOMPOSITION, ALIGN, and DISTRIBUTE are used by the pro-

grammer to tell the compiler how to align and distribute the arrays. A DECOMPOSITION

represents an abstract problem or index domain. Each element of a decomposition

represents a unit of computation. ALIGN is used to map arrays onto decompositions,

corresponding to the problem mapping. Arrays mapped onto the same decomposition

are automatically aligned with one another. DISTRIBUTE maps the decomposition

onto the �nite resources of the physical machine, corresponding to the machine

mapping.

The compiler uses the distribution information provided by the user to distribute

the program data structures and, if possible, generate the communication send and

receive sets that specify how data is to be exchanged prior to the execution of a

parallel loop. When it is not possible to compute these communication sets at com-

pile time, as is the case with indirect subscripts, the compiler generates the code

necessary to compute these sets at runtime. Almost all parallelizing Fortran compil-

ers use the inspector/executor model [SCMB90] for generating these communication
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sets at runtime. The inspector iterates through the loop once to compute the com-

munication sets and passes this information to the executor, who then gathers the

necessary data and executes the loop. Assuming the subscripts do not change inside

of the loop, the overhead of the inspector is amortized over the execution of the

loop. However, if the subscripts do change inside of the loop, as is the case with

adaptive mesh problems, the inspector must be executed every time the subscripts

change, which in the worst case is every iteration. Since the overhead of the inspec-

tor is typically greater (e.g. 1.5x) than the actual execution time of a single iteration

[KM91], executing the inspector each for each loop iteration would result in a 150%

overhead.

� Kali [KM91] provides a set of language primitives that supports a data parallel

model of execution using a global naming space. The programmer must specify: the

actual processor topology, the distribution of data structures across this topology,

and the parallel loops and where they are to be executed. The Kali compiler then

maps the virtual processors used by the programmer onto the actual processors and

inserts the message passing primitives as needed. As with the FortranD approach,

communication sets are generated at compile time if possible, or at runtime using

the inspector/executer model. This approach requires more speci�cation that the

Fortran D approach, and hence less sophisticated compilers.

� Linda [Gel85] is not really a parallel language, but a mechanism for extending se-

quential languages such as C (C-Linda) and Fortran (Fortran-Linda). Processes

communicate via a single name space called Tuple Space rather than the more tradi-

tional shared memory of message passing paradigms. Tuple Space is addressed asso-

ciatively (by contents) rather than by address, and is manipulated by three atomic

operations: out adds a tuple to Tuple Space, read matches a tuple and returns a copy

of it, and in matches a tuple and removes it from Tuple Space. Both read and in

block until a matching tuple exists in Tuple Space. If two processes simultaneously

try to remove a tuple, one will succeed and the other will block. Since tuples must

be removed to be changed (i.e. tuples are immutable), simultaneous updates are

automatically synchronized by the in primitive. The distributed memory version of

Linda associates an identi�er with each tuple that identi�es the processor that owns

the tuple, and any updates are sent to the owner for modi�cation, which is similar

to the owner computes rule used in Fortran D.

� Orca [BT88a] is an object-oriented language based on a shared memory model called

the shared data-object model, in which shared data are encapsulated in passive (data)

objects and accessible only through a set of operations de�ned by the object type.

When a parent spawns a child, it may pass any of its objects as shared parameters to

the child, thus distributing the object among the descendants, possibly on di�erent

memory modules. Changes made to an object are visible to other processes that

hold the object, thus preserving strong consistency. The distributed implementation

is based on replication and migration, and a write-update protocol is used to keep

replicated copies consistent.

� Paralex [OBAAD91] is a graphical programming language in which the user builds

a course-grain data
ow graph that represents the problem to be executed on a het-

erogeneous network of machines. The graph nodes contain information such as the
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sequential code that de�nes the node, the data speci�cations, and information re-

lating to host selection and fault tolerance required. The compiler organizes the

computations according to the data 
ow graph and inserts message passing primi-

tives if connected graph nodes are on di�erent processors. Consistency is maintained

by replicating only immutable data objects.

3.3.2 Operating System-Based Approaches

It was at the level of the operating system that the idea of providing a single addressing

space over a set of distributed memories was �rst implemented, and though there are

language- and hardware-based approaches to performing this service, the majority of DSM

systems are still based operating system-based. Virtual memory is striped across all of

the memories and virtual memory managers, informed by page faults, perform the task of

swapping virtual pages so that the remote references are turned into local references. Thus

the granularity of most operating system approaches is that of the memory page. Much of

the design is focused on coherence among the pages, as the entire set of memories can be

viewed as a cache for the virtual pages, some of which may contain duplicate information.

Virtual memory issues such as thrashing and e�cient address translation must also be

addressed.

� Apollo Domain [LLD
+
83] was one of the earliest systems to employ the DSM

approach for ensuring strong consistency of shared objects in a local area network

(LAN) of Apollo workstations and servers. The objects were maintained by a two-

level distributed object storage system (OSS). The �rst layer provided access to

local objects and the second layer provided access to remote objects, transparent to

the user. A two-level approach is also used to maintain consistency: a lower level

for detecting coherence violations and a higher level for locking objects. Domain

is unique among the DSM systems for employing a version numbering scheme that

does not prevent inconsistencies, but rather it detects them.

� Ivy [Li86] provides a shared virtual memory (SVM) space for a group of Apollo

workstations connected by a token-ring network. This is similar to the Domain

system, except that the granularity of access is a physical page of memory rather

than an object. To maintain coherence, Ivy uses a write-invalidate scheme with

multiple-readers/single-writer semantics for strong consistency. In this approach, all

read-only copies of a page are invalidated when the page is updated. Page owner-

ship is determined using several algorithms, including centralized, �xed distributed,

and dynamic distributed. Ivy also provides synchronization support through the

eventcount primitive. Variations of Ivy also exist for heterogeneous architectures

(Mermaid [LSWZ89]) and for Hypercube architectures (Shiva [LS89] and Koan

[LP91]).

� Choices [SMC90] is an operating system architecture that uses class hierarchies and

object-oriented programming to support the building of customized operating sys-

tems for shared memory and network operating systems. Memory objects are either

local or remote, and the remote memory object class contains handling routines for

page-faults incurred by a processor accessing the remote object. A write-invalidate

scheme, similar to Ivy, is used to maintain strong consistency. Choices also provides

for locking a page to guarantee atomic updates, which is similar to the read-write

lock provided in the Clouds system.
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� Clouds [RAK88] is an object-based distributed operating system that takes an

object-oriented approach to separating the address space, which is represented by

globally-accessible objects, from the computation, which is represented by threads.

Objects are passive entities that comprise the global naming space, and are com-

posed of segments, which provide the granularity of sharing. Threads execute within

the context of an object. Since threads may access other objects, they are not as-

sociated with a single address space and thus may span machine boundaries. Each

node contains a Distributed Shared Memory Controller (DSMC) which owns and

maintains the segments created on that node. The DSMC's use a lock-based pro-

tocol for strong consistency that uni�es synchronization and the transport of data.

Both exclusive (read-write) and shared (read-only) locks are supported.

� Mach [RTY
+
87] is a multiprocessor operating system kernel that provides two

shared memory abstractions: copy-on-write and read-write. In copy-on-write shar-

ing, unrelated tasks share an address space without the actual data being copied.

However, the �rst task that attempts to write to the data gets a copy of it and the

copies become distinct from this point on. In read-write sharing, a shared memory

region is created with one of the following inheritance attributes: shared, copy, or

none. Shared pages are physically shared between the parent and children; i.e. there

is exactly one copy of the page. Copy pages give each child a copy of the page, and

none speci�es that no sharing is to take place between the parent and child. Mach

provides strong coherence using a write-invalidate scheme for sharing pages across

the network.

� Mether [MF90] provides a set of shared memory mechanisms for a network of

Suns. Mether di�ers from most other DSM systems in that it does not provide

memory coherence { a process may continue to write to a page without the changes

being re
ected in the other copies. The other page copies are updated in one of

the following three ways: (1) the process with the consistent copy may invalidate

all other copies; (2) the process with an inconsistent copy may invalidate its own

copy; (3) the process with an inconsistent copy may request a copy of the page. As

should be evident, the user is responsible for tailoring the consistency requirements

to match the needs of the application.

� Munin [BCZ89] is a DSM system that provides multiple consistency protocols and

uses a form of weak consistency called release consistency, which was introduced by

the Dash system. Munin allows the coherence protocol to be tailored to the access

patterns of the data, which is determined by the user. Current access patterns

supported include:

{ Read-only. Objects that are not changed after initialization. Replication is

used since these objects cannot become inconsistent.

{ Migratory. Objects that are accessed by a single thread at a time, such as a

critical section datum. One copy of the datum is kept and a lock-based protocol

is used to ensure consistency.

{ Producer-consumer. Objects written by one thread and read by another. Repli-

cation is used with a write-update coherence protocol, since the number of

processors e�ected by the updates is typically only one.
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{ Reduction. Objects that perform an atomic lock-read-write-unlock operation.

While similar to migratory objects, reduction objects are kept in one location

and coherence is guaranteed with a lock-based protocol that is inherent to the

object.

{ Concurrent-write-shared. Objects that are concurrently written by multiple

threads, without the writes being synchronized. The programmer ensures that

the writes occur to di�erent portions of the object, thus alleviating the need

for synchronization. Coherence is maintained by merging separate copies of the

object after all the writes have been processed.

{ Result. Objects that are accessed in phases. They are alternately updated in

parallel by multiple threads, then read by a single thread. All copies are sent

to the read thread for modi�cation.

3.3.3 Hardware-Based Approaches

At the hardware level, the shared addressing space is divided into small blocks, much

like cache lines, and special communication processors ensure that the processors have

coherent copies of the blocks using a hardware-based cache-coherence protocol, such as

snooping [KMRS86]. Most hardware-based approaches are similar in spirit to the operating

system-based approach, the di�erence being that the granularity is typically smaller and

the coherence protocol is implemented in hardware rather than software.

� CapNet [TF90] is a project designed to provide DSM across a wide-area network,

with a primary goal of investigation of network support to reduce latency.

� Dash [GLL
+
90] is a hardware-based DSM system that uses an invalidation-based

coherence protocol to provide a relaxed form of weak consistency called release con-

sistency, in which each shared memory access is classi�ed as either a synchronization

or an ordinary access, and all synchronization access must be weakly-consistent. Ac-

cess granularity is 16 bytes, which is smaller than any other DSM system surveyed

and is possible due to the hardware-based coherence protocols that act much like

hardware-based coherence protocols for multiple caches on a shared memory system

[BK85].

� Memnet [Del88] is a shared token-ring network that provides a close-coupling of

processors in a distributed multiprocessor environment. Memnet has an access gran-

ularity for shared data of 32 bytes, which is much smaller than the typical page gran-

ularity of the operating-system approaches. This is possible due to the dedicated

hardware that ensures consistency using a very fast token-ring-based write-invalidate

protocol. Memnet does not support virtual memory, and therefore acts more like a

cache management system in a shared-memory multiprocessor.

� Plus [BR90] is a hardware-based DSM implementation that uses a non-demand,

write-update coherence protocol. Pages (unit of granularity) are only replicated at

remote nodes at the request of software, otherwise all references are forwarded to

the owner of a particular page. Interprocessor coherence is maintained using write

barriers, which must be explicitly speci�ed by the program.
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� KSR1 [Ken92], the �rst computer from Kendell Square Research, is a highly-parallel

multiprocessor that is scalable to 1088 processors. Shared memory is obtained

through a global name space and processor caches, guaranteed by hardware to be

consistent. The patented ALLCACHE system maps the single addressing space into

the physical caches, as is done is software by the operating system-based DSM sys-

tems, and implements a hardware-based coherence scheme to guarantee sequential

consistency, which is similar to strong consistency. Scalability is achieved by group-

ing the caches into a hierarchy, starting with the processor and extending out as

groups of processors (in rings) are added.

3.4 Relation to Our Research

The previous three sections have examined various research projects in the areas of

multithreaded architectures, message passing systems, and distributed shared memory

systems. Our research borrows ideas, but di�ers from each of these areas as follows:

� From the multithreaded arena, our research borrows the idea of tolerating latency

by overlapping parallel threads of computation with long latency operations, such

as memory access. However, we employ a software-based approach that does not

require the use of special-purpose processors and tagged memory (unlike the hard-

ware approaches), and is focused on a strict functional model of computation, unlike

the TAM project, which focuses on a multithreaded implementation for a non-strict

functional language. Our model of computation is tuned for e�cient sequential

performance, and we only use multithreading as a technique for examining the ef-

fectiveness of latency tolerance in our system.

� From the message passing arena, our research borrows the idea of using very fast

asynchronous message passing, as was seen in the implementation of Active Mes-

sages. However, unlike Active Messages, our model hides the message passing ab-

straction within a distributed shared memory scheme so that the programmer is

exposed to a shared memory model of computation as opposed to a message passing

model.

� From the distributed shared memory arena, our research borrows the idea of pro-

viding a shared memory paradigm on top of a set of distributed memories. Our

DSM design is embedded in a runtime system, which is similar to the language-

based approach in that both provide granularity at the level of the data structure

and lack sophisticated (and expensive) support for coherence protocols. We are not

restricted to the owner computes rule, which speci�es that the owner of a datum

must perform the computation that de�nes that datum, and we are not restricted

to communication sets for establishing the necessary message passing. Instead, our

system uses on-the-
y address translation that works with general distribution func-

tions and non-linear subscripts. However, runtime address translation is expensive,

and so we utilize various techniques to eliminate this. Unlike the other hardware-

and operating system-based approaches, which implement a more general update

scheme that requires the use of a costly coherence protocol, our system employs

an owner writes scheme for updating shared variables and a write-broadcast scheme

for updating replicated structures. Rather than implement an expensive coherence
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protocol, our system relies on the compiler to ensure that the coherence of replicated

data structures is not violated.



Chapter 4

TASK MANAGEMENT

The �rst myth of management is that it ex-

ists. The second myth of management is that

success equals skill.

- Robert Heller

In this chapter we present the design of a 
exible task management system for execut-

ing Sisal tasks on a distributed memory multiprocessor. The design focuses on the ability

to execute both large and small numbers of tasks on both a large and a small number of

processors. However, before we describe the design of the distributed task management

system, it is necessary to understand the role and scope of a Sisal task. Therefore we

�rst describe a Sisal task and the task management design that is used in shared memory

implementations.

4.1 Sisal Tasks

4.1.1 Sisal Parallelism

The functional language semantics of Sisal ensures that only \true" data dependence

constrains the parallelism of a program. Thus independence is de�ned in this context as

having no data dependence between functions, loops, or expressions. Sisal allows for the

extraction of parallelism at three levels:

� Function-level parallelism exists when two functions are independent of each other,

and thus may be executed in parallel. Functional language semantics ensure that

if functions are independent of one another (in terms of input and result values),

the order of evaluation will not a�ect the outcome of the program (Church-Rosser

property).

� Loop-level parallelism exists when the iterations of a loop are partially independent

of each other, and thus may be executed in parallel. Sisal provides two forms of an

iterative construct, though the task of determining which loop construct to use is

left to the programmer.

{ for initial, used for specifying loops which must be executed sequentially or

in pipeline fashion
1
.

1However, the current Sisal compiler, OSC, does not support pipeline parallelism in the for initial

construct



37

{ for, used for specifying loops in which the loop bodies may execute in parallel,

which corresponds to the concept of data parallelism.

� Instruction-level parallelism exists when two instructions are independent of each

other, and thus may be executed in parallel. Sisal programs can be represented

by a data
ow graph, which exposes the instruction-level dependencies. Several

data
ow architectures, including the Manchester Data
ow Machine [BS89], the

RMIT/CSIRO Data
ow Machine (CSIRAC) [AE89], and the ADAM data
ow ar-

chitecture [Mit92], have used these data
ow graphs to exploit instruction-level par-

allelism.

The current multiprocessor-based Sisal implementation is optimized for e�cient ex-

ecution of scienti�c applications. Therefore, although Sisal language semantics allow for

the extraction of all three levels of parallelism, the current multiprocessor-based compiler

and runtime system support only loop-level parallelism, as this is the dominant form of

parallelism in many scienti�c applications.

4.1.2 The Master-Slave Model of Parallel Execution

The current Sisal runtime system employs a master-slave model of parallel execution,

in which the roles of each process type are de�ned as follows:

� The master process executes all sequential portions of the code, including I/O,

initialization, and synchronization. Additionally, the master process is responsible

for setting up and initiating parallel execution of a loop, in which the following

actions are performed:

1. The parallel loop is divided into a set of independent tasks, where each task

represents a contiguous set of loop bodies.

2. The tasks are distributed among the participating slave processes for parallel

execution.

3. A barrier is established, which prevents the master from continuing until all of

the slave processes have completed their tasks.

Once the barrier has been completed, the master continues with the execution of

the program.

� The slave processes are responsible for executing the parallel tasks that are dis-

tributed by the master as follows:

1. Each slave continues to check a ready queue for the appearance of a task that

needs to be executed.

2. Tasks are removed from the ready queue and executed by the slave processes

in parallel.

3. The result of the task is either a partial value that needs to be combined with

the global value held by the master (i.e. reduction), or is a set of array elements

representing a portion of a newly-formed array.

4. After reporting the results, the slave indicates that it has completed this task.
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Nested parallel loops imply that the tasks representing the outer parallel loop will

contain parallel loops themselves, and thus every slave process must be capable of initiat-

ing (or becoming) a master process to facilitate the parallel execution of the inner loop.

Therefore it is more convenient to think of masters and slaves as processes rather than

processors, since at any given time, a single processor may be playing the role of either

the master of slave.

4.1.3 Slices and Activation Records

Whereas a task in Sisal is the general term used for parallel work, a slice is, speci�cally,

a contiguous set of parallel loop bodies. The thickness of a slice is de�ned as the number

of contiguous iterations it contains, and is determined by the loop bounds, the number

of slave processes executing the loop, and the loop distribution strategy. The runtime

data structure for a slice is an activation record, containing the following minimal set of

information:

� A range of execution. Since Sisal slices are de�ned as a contiguous set of loop bodies,

a range (lo, hi) is su�cient for de�ning the scope of parallel execution for a task.

� A code pointer, representing the function that the slave will execute. This func-

tion consists of a parameterized version of the parallel loop, where the parameters

represent the range of execution.

� An argument list. Besides the range of execution, each task may require additional

inputs, such as the location of a global array to be operated on, or the values of some

global variables. Additionally, an output argument is speci�ed which denotes the

location of a global value or pointer to an array that is to be �lled. These arguments

are packed into a single record by the compiler and included in the activation record

as a single argument.

� A unique loop identi�er, which will be used in the case of nested parallel loops to

identify which barrier counter is to be updated upon receipt of a slice-completion

message.

In general, the terms task, slice, and activation record all represent the concept of

parallel work in Sisal as a contiguous set of loop bodies and, although the terms are often

interchanged, the concept remains clear.

4.2 Shared Memory Task Management

Now that we have de�ned the unit of parallel work in Sisal, the task, and the method

of performing parallel work, the master-slave model, we will describe task management as

it exists in the shared memory implementations of Sisal.

At the heart of the shared memory implementation is the shared ready queue, in which

the master enqueues each of the activation records (or slices) and from which the slaves

receive them, as depicted in Figure 4.1. The ready queue is allocated from shared memory,

and thus is accessible to the slave processes on all processors. Barrier synchronization is

performed by having the slaves set a done 
ag in the activation record on the shared ready

queue, and the master counts the number of activations that have completed. When the
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Figure 4.1: Shared memory task organization

count equals the number of activations enqueued, the activations are removed from the

queue and the barrier is complete.

The advantage of this approach is that load balancing techniques, such as guided self-

scheduling [PK87], are possible due to the shared nature of the queue. Load balancing is

the problem of ensuring that each processor in a parallel machine performs roughly the

same amount of parallel work, so that minimal time is lost on barrier synchronizations.

Since all of the activation records are placed in a single location, a slave simply gets the

next slice from the queue, executes the slice, and returns for more. Slaves continue to

execute the slices until none remain, at which time the slaves will wait for more work.

The disadvantage of this approach is that since multiple processors have access to this

queue, the queue becomes a shared resource that must be accessed using a critical section.

The Sisal runtime system uses a lock-based protocol for ensuring mutually-exclusive access

to the queue. This means that before any master or slave process may access the queue,

a lock must be successfully acquired, and if the lock is not available, then the process

must wait. Therefore, contention for the shared resource creates a runtime overhead,

which is minimally the time required to execute the lock protocol, but can be extended

when the process must wait for the lock. Since this overhead due to contention grows

with the number of processors in the system, we say that the design does not scale. Still,

this shared memory design has resulted in e�cient implementations for shared memory

multiprocessors that can quickly and e�ciently access shared data structures [Can92], as

the number of processors for these systems is relatively low.

4.3 Distributed Memory Task Management

Executing the Sisal master-slave model of parallel execution in a distributed memory

environment implies that a shared ready queue is not available. Therefore, a new method

for distributing the tasks to the slaves, and a new method for performing a barrier syn-

chronization is required.
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4.3.1 Task Distribution and Barrier Synchronization

Since shared data structures are not supported by hardware in a distributed memory

multiprocessor, we give each slave process its own private ready queue. The master then

sends the activation records to the nodes containing the slave processes using the native

message passing mechanisms, where the message is received (asynchronously) and placed

onto the private ready queue of the local slave process. The slave monitors its own private

ready list, which can now be done without having to obtain exclusive access, and executes

any slice that arrives. Resulting values and a completion message are sent back to the

master upon completion of each slice.

Barrier synchronization is now performed by having the master process count each

of the slice-completion messages, and when the count is equal to the number of slices

distributed, the barrier is complete. However, in the case of nested parallel loops, it is

not su�cient for a single counter to keep track of the slice-completion messages, since

a single processor may receive slice completion messages for both a parallel outer and

parallel inner loop, for which it is the master. Thus it is necessary to distinguish among

the slice completion records, and this is done by assigning a unique loop identi�er to each

parallel loop. An identi�er is removed from a pool of identi�ers that is local to each

processor, and is replaced when the barrier for a loop is complete. Also, each processor

maintains an array of barrier counters, corresponding to the loop identi�ers, so that when

a slice-completion message is received, the proper barrier counter can be incremented.

This distributed design has removed the need for obtaining critical section locks to

access the ready queue, thus eliminating the overhead for contention and allowing for a

scalable number of slaves to be employed. However, the implicit load balancing capabilities

of the shared queue have been lost, and thus it is now possible for the system load to

become imbalanced. Although various dynamic load balancing schemes could be employed

to ensure that the load remains balanced [Cho90], we have chosen not to implement any

of these schemes for two main reasons:

1. Dynamic load balancing strategies work by migrating work from an over-utilized

node to an under-utilized node, either because the under-utilized node asked for

the work (active load balancing) or because the over-utilized node decided to give

some work away (passive load balancing). Either way, parallel work, in our case

slices, would migrate from one node to another, disrupting the original distribution

pattern. Since our system is designed to minimize the number of remote references

by closely tying the distribution of tasks with the distribution of data, a dynamic

load balancing technique would disrupt this alignment, possibly creating excessive

remote references and causing an increase in the total execution time rather than a

decrease.

2. Dynamic load balancing algorithms require updated information about their sur-

rounding processors, resulting in a runtime overhead for exchanging this informa-

tion. Also, task migration results in even more message passing. Dynamic load

balancing is an expensive operation, and will not be undertaken until it is deter-

mined that the loads are imbalanced, and that this imbalance could bene�t from a

load balancing strategy. Thus, there is not enough analysis at this point to justify

the added expense of a dynamic load balancing strategy.
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Figure 4.2: Distributed memory task organization

4.3.2 Extending the Master-Slave Model of Parallel Execution

Our distributed memory task management system is intended to execute on a wide

variety of distributed memory machines, with sizes ranging from tens to thousands of pro-

cessors. As previously de�ned in Section 4.1, Sisal parallelism is expressed in terms of a

task, which represents a contiguous set of loop bodies that can be executed in parallel, and

implemented dynamically as a slice, which is de�ned by an activation record. Because dis-

tributing these slices over a large number of processors can create a sequential bottleneck,

and because the ability to mask latency requires the parallel execution of tasks within a

single processor, we have augmented the single-level de�nition of Sisal parallelism to cre-

ate a 
exible multi-level parallelism hierarchy, as depicted in Figure 4.2. To maintain the

high level of execution e�ciency that is achieved by slices in the single-level design, each

level of the hierarchy still corresponds to a contiguous set of loop bodies, where slices are

\thicker" than sub-slices, and sub-slices are thicker than threads. Since we have changed

the de�nition of parallel work in the Sisal system, we must also modify the master-slave

execution model to account for the various levels of parallelism. Thus we augment the

master-slave model with two new models of parallel execution: multi-level distribution and

multithreading.

4.4 The Multi-Level Distribution Model of Parallel Execution

The multi-level distribution (MLD) model of execution is designed to parallelize the

distribution of tasks from master to slaves, and parallelize the reduction of values from

slaves to master. This becomes necessary when the number of slave processes gets large

enough that the sequential distribution and reduction times start to lower the e�ciency

of the parallel execution time. The MLD model works as follows (refer to Figure 4.2):
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� The master process divides the parallel loop into a number of slices, where the

number is called the fan-out degree. These slices are then sent to sub-master

processes, and a barrier is initiated to wait for the completion of the sub-master

processes. After the barrier is complete, the master returns execution at the point

following the parallel loop.

� Each sub-master process will divide its slice into sub-slices, and distribute these

sub-slices among a subset of the slave processes in parallel, where the degree of

parallelism is equal to the fan-out degree. Each sub-master process then performs a

barrier synchronization for the sub-slices it has distributed, and collects the reduction

values from the slaves. Upon completion of the barrier, the sub-masters will report

their values to the master and indicate that the assigned slice has been completed.

� The slave processes execute the sub-slices obtained from the sub-master, and report

back to the sub-master with the results of the sub-slice and an indication that the

sub-slice has been completed.

The main goal of our MLD design was to enable parallel distribution and reduction

without requiring the compiler to re-structure the loop slices, thus remaining independent

of the compiler and allowing MLD to be enabled or disabled without having to re-compile.

For MLD execution, the runtime system divides a parallel loop into fan-out slices,

rather than p slices, where p is the number of participating processors. The slices are

then distributed to the fan-out sub-master processes, who will further subdivide the slices

and distribute them among p / fan-out slave processes in parallel. If the loop results in a

reduction, then each of the sub-master processes will allocate a local value to accumulate

the reduction values from the slave's it controls. When the slave processes complete their

slices, they will send their completion message and reduction value back to their sub-

master process. When a sub-master completes the barrier for the slaves it initiated, it

will report back to the master with the accumulated reduction value and a completion

message. When the master completes the barrier for all of the sub-master processes, the

loop is complete.

The only new structures required for this design are MLD barriers and intermediate

reduction values for the the sub-master processes. Since we utilize the same loop slice

method of parallelism, and loop slices are controlled by the runtime system, we meet our

design goal of isolating the compiler from the operation of MLD.

As we will see in Chapter 7, the distribution of slices can create a signi�cant sequential

bottleneck when the number of processors is in the hundreds. By creating this extra level of

sub-masters and sub-slices, MLD serves to parallelize this sequential bottleneck, e�ectively

boosting the parallel e�ciency.

4.5 The Multithreaded Model of Parallel Execution

The multithreaded execution model is designed to tolerate remote memory laten-

cies by switching among local threads whenever a remote memory reference is initiated.

Threads and slices are closely related. A slice is a contiguous set of loop bodies, rep-

resented by an activation record, and is executed by a single slave process (on a single

processor). Threads are a further subdivision of slices, and are represented by a thread

descriptor, which is a data structure similar to an activation record but augmented with
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�elds to support the multithreading context switching mechanism. The multithreading

model works as follows (refer to Figure 4.2):

� The slave process, having received a slice from the master process, divides the slice

into mt threads, where mt is called the degree of multithreading. A thread descriptor

is created for each thread, and linked together in a circular list. The threads are

then scheduled for execution in round-robin fashion. Whenever a remote reference

is initiated in the current thread, the current thread is suspended and the next

thread in the list is started (or resumed). This continues until all the threads have

completed, indicating that the slice has also been completed. The slave process then

reports back to the master process with any reduction value and an indication that

the slice has been completed.

Multithreading increases the parallelism in the system from p, the number of proces-

sors executing slave processes, to p�mt. The increased parallelism is then used to mask

the latency of remote memory references.

By allowing both the multi-level distribution model and the multithreading model

to be selectively enabled and disabled, the runtime system possesses the 
exibility to

implement a wide range of parallel loop distribution and execution strategies.

4.5.1 Multithreading Design

Since the nCUBE/2 multiprocessor provides no hardware support for multithreading,

we have designed a software multithreading system, adhering to the following design goals:

� Minimal synchronization overhead for context switching. The minimal requirement

for multithreading to be e�ective is that two context switches must be faster than

one remote memory reference, otherwise it is better to simply wait for the remote

value.

� Minimal impact on activation record structure. Much of the Sisal runtime system,

and thus VISA, relies on the current structure of Activation Records. To minimize

the amount of changes to the runtime system, and to allow easy enabling and dis-

abling of multithreading, the design should require minimal changes to the structure

of the activation records. We achieve this by having a separate data-structure for a

thread: a ThreadDescriptor (see Figure 4.3).

� General purpose. We do not want to design a multithreading scheme that only

works because of some speci�c knowledge of the operations being performed within

a thread.

� Machine independence. Finally, we want our design to be machine independent so

that it can be easily ported, along with the rest of the VISA system, to other dis-

tributed memory multiprocessor platforms. This precludes using assembly language

primitives to modify the program counter and stack pointer.

Our multithreading design, adapted from an idea from Rob Pike at AT&T Laborato-

ries [Rob92], is based on the standard Unix system calls setjmp, which saves the state of

the current computation, and longjmp, which restores a previously saved state. Each par-

allel task received by a worker processor is divided into mt threads, where mt is called the
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Figure 4.3: Thread descriptor data structure

degree of multithreading. The parallel tasks, and consequently the threads, are guaranteed

by the Sisal compiler to be completely independent, thereby allowing arbitrary parallel

execution. All threads are executed sequentially by the worker processor, and scheduled

in round-robin fashion. One ThreadDescriptor (Figure 4.3) is allocated for each of the mt

threads, and linked together to form a circular list. The �elds in the ThreadDescriptor

structure have the following functions:

� id stores an identi�er, unique among the current list of threads, and used for match-

ing messages and threads.

� jmp label stores the thread context that longjmp will use for starting a new thread,

and is initialized by the setjmp command.

� dead? is a 
ag that indicates whether or not this thread has terminated and ready

to be removed from the list.

� stack[] is a pointer to the stack on which the thread will be running. If the threads

were to execute from the normal system stack, then the entire stack frame would

need to be saved and restored for each context switch, since the next thread would

destroy its contents. However, by modifying the jmp label so that the stack for

each thread is located in heap space, only the processor registers need be saved and

restored for context switches. stack[] reserves the heap space necessary for this

stack (64K bytes for the current nCUBE/2 implementation).

� ActRec is a pointer to the conventional thread representation of the runtime system,

the Activation Record (ActRec) structure. This is done to satisfy the goal of keeping

the current runtime thread structure intact.

� next is a pointer to the next ThreadDescriptor structure in the circular list.

Notice that our threads contain a number of loop bodies and consequently are still

relatively large. Since the threads are executed sequentially, the amount of parallelism we

exploit per processor is equal to mt, the degree of multithreading. Our threads allow for
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only one outstanding remote request to simplify the synchronization process. We favor

e�cient sequential execution above exploiting maximal parallelism.

Multithreaded execution proceeds as follows. Before starting the �rst thread, a return

address is saved using setjmp, so that after all the threads have completed, there is a place

to return to. The scheduler then selects a thread for execution, which continues until

it either completes execution or begins a remote memory reference, implemented as a

split-phased transaction. In the �rst phase, the thread sends a visa request to the target

processor that contains the desired value, then invokes the scheduler to start another

thread. The scheduler selects the next thread from the circular list (if one exists) and

begins its execution. The target processor will process the visa request and send back an

associated visa reply, containing the requested remote value. When a visa reply message

arrives during the execution of a thread, its message handler examines the id �eld of the

message and, if the id does not match the id of the currently executing thread, stores the

message in the storage bu�er for the proper thread. A presence bit, indicating the arrival

of the message, is also set.

When a thread is re-enabled by the scheduler from having sent a visa request, it �rst

examines the presence bit of its storage bu�er to see if the visa reply message arrived and

was stored by another thread. If so, this is termed a hit, and the message is removed

from the bu�er, the presence bit is reset, and the value of the remote reference requested

earlier is extracted from the message. This completes the second phase of the split-phased

transaction.

If the message is not found in the bu�er storage, the thread will wait for the message.

Since threads are executed in a round-robin fashion, and the message start-up time for

the nCUBE/2 (160 �s) is so high compared to the message transport time (2.6 �s per

byte) [vECGS92], we assume that messages are received in order. Therefore, waiting for

the outstanding message after the �rst thread switch will minimize the thread switching

overhead without much loss of parallelism. This is clearly an architecture-dependent

decision, and would have to be re-evaluated for a distributed system with di�erent message

passing timing characteristics. We now re-examine our design goals in the context of our

design choices.

� Minimal synchronization overhead for context switching. Each thread carries its own

context in the jmp label, aside from its runtime stack, which is allocated out of heap

space. For the nCUBE/2, the processor state, and thus the size of the jmp label, is

24 registers. The average time required by the scheduler to save the current context

and restore another is 90 �s. Therefore twice this time (180 �s) is required to

switch to another thread and then back, and must be less than the minimal round-

trip message time for multithreading to be pro�table. Since the minimal round-trip

message time for the nCUBE/2 is 340 �s [vECGS92], this design meets this primary

criterion. However, as we shall see in Chapter 7, this is not the only overhead that

multithreading incurs and must cover to be bene�cial.

� Minimal impact on the current activation record structure. As the circular Thread-

Descriptor structure is an extension of the activation record, the remainder of the

runtime data structures and routines remains largely unchanged.

� General purpose. By manipulating the program counter and stack pointer using

standard C routines, this design does not take into account any knowledge of the
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thread behavior. As long as the stack[] space is large enough to hold the stack

frames of all called routines, this method will work for general thread code.

� Machine independence. All of the routines are written in standard C, and provided

that a machine correctly supports the setjmp and longjmp routines, then this method

will work without modi�cation on another machine.

In our design, a loop-slice is divided into mt local thread descriptors with adjusted

loop index values. While this approach allows the integration of multithreading with

minimal impact on the compiler and runtime system, it creates extra input parameter

references since each thread must now get the necessary input parameters. By replicat-

ing the parameter structure in the VISA system, the extra parameter fetches are local

VISA references, but they are still extra references and represent additional overhead for

multithreading.

4.5.2 Quantitative Cost Analysis of Multithreading

Multithreading incurs a startup cost, Cstart, averaging 550 �s for creating the circular

thread queue and message storage bu�ers. Fetching the extra thread input-parameters

results in Cparam = 10�s per parameter.

If a shared array access read A[i] is local, A[i] is fetched without further ado and the

thread continues. This happens most of the time in programs with high locality and makes

our threads much larger than threads that switch at any memory reference. If the access

is remote, a read request package is created and sent o�. The source processor spends an

average of 200 �s to form the package and initiate the send, and this needs to be done

whether multithreading or not. The round trip time for the remote read involves 170 �s

message startup time and 
ight time through the net, 350 �s for the target processor

to accept the message, fetch the data, form a reply package and initiate the send back,

and 170 �s message startup time and 
ight time through the network back to the source

processor. Therefore, the source processor has Cround = 690�s to do other work. In this

time, the source processor needs to do a context switch to another thread, which involves a

longjmp and am setjmp, at a total cost of 90 �s. The di�erence Bswitch = 690�90 = 600�s

is what is gained from multithreading, but only if there is useful work to do in the other

thread. When this is the case, this is called a successful context switch.

Multithreading pro�ts if the total gain caused by successful context switches is larger

than the initial costs of setting up the circular thread descriptor structure and fetching

the extra input parameters. If we call H the number of successful context switches, and

P the number of remote parameters needed by each thread, we get the following criterion

for multithreading being e�ective:

�Time � (H �Bswitch)� fCstart+ (MT � 1) � (P � Cparam)g > 0 (4:1)

For the above values of Bswitch , Cstart, and Cparam, this implies:

H > ((MT � 1) � P + 55)=60 (4:2)

The above inequality must hold for every processor involved, as barrier synchroniza-

tion at the end of a loop causes the slowest process to govern the computation time.
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Figure 4.4: Distribution options for nested parallel loops

An implicit form of latency hiding occurs in both the multithreading and non-multithreading

cases, when a processor can handle an interrupt while being blocked. This can occur fre-

quently, especially in the non-multithreading case, and amounts to a 350�s gain.

In Section 7.6, we will evaluate several example programs using this equation of

cost, and compare it with the actual timing results obtained from applying multithreaded

execution.

4.6 Control Parameters for Parallel Loops

Flat, or single-level, parallel loops o�er few choices for parallelization and distri-

bution: if the loop is parallelized, then it is typically distributed among all participating

nodes, using either the single-level distribution or multi-level distribution strategy. Nested

parallel loops, on the other hand, provide a wide range of distribution options, such as

distributing the outer loop for parallel execution and executing the inner loop sequen-

tially (called sequential inner loop), distributing both outer and inner loops for parallel

execution (called fully-distributed inner loop), and fully distributing the outer loop while

only partially distributing the inner loop (called partially-distributed inner loop). These

nested loop distribution schemes are depicted in Figure 4.4, where the outer loop is fully-

distributed over the �rst four processors, and the inner loop is distributed over some set

of the 8 available processors.

The �rst distribution scheme (sequential inner loop) minimizes the overhead of the

inner loop by executing the loop sequentially, but limits the amount of available parallelism

to the size of the outer loop. Any machine parallelism in excess of the outer loop parallelism

would be wasted. The second distribution scheme (fully-distributed inner loop) allows us

to exploit the combined parallelism of both outer and inner loops, and instead of wasting

machine parallelism, this strategy often over-saturates the machine resources, causing

unnecessary overheads. Therefore, the third scheme (partially-distributed inner loop) was

created as a hybrid of the �rst two. When the outer loop parallelism (n) is larger than

the number of processors (p), the inner loop is run sequentially, but when p exceeds n, we

will distribute the inner loop in a controlled fashion for parallel execution. For example,

suppose we are executing a nested parallel loop with 4 outer loop iterations (n = 4) and 4

inner loop iterations (m = 4) on 8 processors (p = 8). Since the outer loop parallelism will

not cover the machine parallelism, we will distribute the outer loop to 4 of the processors

(P0, P1, P2, P3) and each of these processors, Pi, will distribute the inner loop to Pi and



48

blocksize start node stride

Distribution Scheme Outer Inner Outer Inner Outer Inner

Sequential Inner Loop n=p m Pid Pid 1 1

Fully-Distributed Inner Loop n=p m=p Pid Pid 1 1

Partially-Distributed Inner Loop 1 mn=p Pid Pid p=n 1

Table 4.1: Control parameter settings for nested loop distribution schemes

Pi+(p=m). This distribution scheme will utilize all the processors while minimizing the

overhead of distributing the inner loop.

Since the decision of which distribution scheme to use can only be made after runtime

parameters have been established (i.e. size of loops, number of processors), we have

equipped our runtime system with the ability to handle the three nested loop distribution

schemes discussed, and the 
exibility to create others. The actual decision can then be

made by a compiler using runtime pro�les or other analysis, or by the programmer. This is

accomplished by associating three control parameters to each parallel loop: blocksize, start

node, and stride. The blocksize speci�es the thickness of the loop slices, i.e. the number

of contiguous loop iterations for each slice, thereby creating n=blocksize slices of the loop

to be distributed. By default, blocksize is set to n=p so that p slices are created, one per

processor, minimizing overhead. The slices are then distributed among the processors,

starting with start node and continuing at an increment of stride until all slices have

been distributed. Slices are wrapped in modulo fashion when their number exceeds the

number of processors divided by the stride (n=blocksize > p=stride). Table 4.1 gives the

parameter settings for the three nested loop distribution schemes discussed earlier, where

n is the number of outer loop iterations, m is the number of inner loop iterations, p is the

number of processors, and Pid is the designator for each processor id = 0 : : :p� 1.

4.7 Summary

We have introduced the concept of parallel work in Sisal, and the master-slave model

of parallel execution used in exploiting this parallelism. We have focused on the distributed

task design, where we have augmented with single-level model of distribution and execu-

tion with two additional models, multi-level distribution and multithreading, which allow

for a more 
exible hierarchy of parallelism. These additional models are necessary to

e�ciently execute a wide variety of parallel loops on a wide variety of processor con�gura-

tions. We have outlined the design of our software multithreading scheme, and provided a

quantitative cost analysis of its performance. We have also introduced a system of control

parameters that is used to de�ne how a parallel loop is to be divided and distributed among

the participating nodes, which is essential for supporting the various distribution options

present in nested parallel loops. As we shall see in Chapter 5, these control parameters

correspond to the control parameters used in partitioning and distributing the user data

structures. This is a deliberate attempt to align task distribution with data distribution,

which is necessary to minimize remote references.



Chapter 5

MEMORY MANAGEMENT

To avoid slow performance, Apple suggests

that the amount of virtual memory you select

be less than the system RAM.

{ INFOWORLD

Central to the current Sisal compiler is the assumption of shared memory, which is

required for both system and user data structures. In Chapter 4, we outlined the design

of a task management system that eliminates the need for global system data structures

by employing a distributed, rather than centralized, task distribution approach. In this

chapter, we describe the design of runtime support for a single addressing space and

general data decompositions used to manage global user data structures.

Other distributed memory languages [HKT92, KM91, ZBG86] use a compiler-based

approach to providing a single addressing space. However, there are several problems with

this approach that have kept them from wide-spread use, and motivate our decision to

employ a runtime-based design:

� Data distribution and automatic parallelization of a sequentially written program

requires extensive dependence analysis that can be hampered by common imperative

programming phenomena such as aliasing. Also, symbolic subscript terms with

unknown values, coupled subscripts, and nonzero or nonunity coe�cients of loop

indices often make dependence analysis impossible for even the most sophisticated

parallelizing compilers [SLY90]. When static dependence analysis does fail, the

alternative is to employ a costly runtime-based scheme for generating the necessary

communication sets by actually pre-executing the parallel loop to determine the

current access pattern [SCMB90].

� Due to the complexity of these compilers and the di�culties in porting them to new

machines, their availability is limited to only a few of the currently available dis-

tributed memory multiprocessor systems. Also, the way in which data distribution

is controlled and the amount of programmer interaction varies widely from system to

system, which can make porting an application from one distributed memory system

to another a non-trivial task.

� Programmers have long been aware that the language design has a signi�cant impact

on how easily an algorithm can be transformed into working code [PB90]. Even the

so-called \general purpose" languages are recognized as being suited for certain prob-

lem solving approaches. The transformation process is more tedious and error prone

when the conceptual models supported by the language relate only peripherally to

the problem-solving model of the programmer. Unfortunately, though the compila-

tion ideas for these compilers are applicable for a wide range of languages, almost
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Figure 5.1: Overview of the VISA system

all of these systems o�er the same programming language, drastically restricting the

choice of languages for distributed memory machines.

� The single addressing space is realized by dividing the global data structure into

disjoint portions, and assigning ownership of these portions among the participating

processors. Using the \owner computes" rule, the de�ning computation for each

element is carried out by the processor which own that element. This has the e�ect

of fusing the task distribution and data distribution phases, which can result in load

or memory imbalance problems when the goals of task and data distribution are

opposed. Also, the single addressing space is limited to parallel loops, and thus any

data to be shared outside of such loops, such as global argument structures, must

still be communicated using message passing primitives.

Considering these di�culties of distributed memory compilers, we have designed a

runtime-based approach to providing a single addressing space for the Sisal compiler,

rather than modifying the compiler itself to deal with distributed data structures. Address

translation is done on-the-
y, which alleviates the need for extensive dependence analysis

in order to determine which data will be accessed, and when. Language independence is

achieved by designing the system as a stand-alone runtime library that can be accessed

by other compilers (see Figure 5.1). Finally, any data structure may be placed into the

single addressing space, including shared argument structures, which can be replicated,

and atomic variables, which exist in only one node.

5.1 Design Goals

Our goal in designing the VISA runtime system is to eliminate the burden of explicit

data management from the programmer, while at the same time providing explicit control

over the general distribution of global data structures. Towards this end, VISA provides

the following services:
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� Single Addressing Space. One of the primary di�culties in programming a dis-

tributed memory multiprocessor is the lack of a single addressing space for user

data structures, such as arrays. This results in encumbering the compiler, or worse

yet, the programmer, with the task of distributing data structures and inserting

the proper code to fetch and store non-local references. Therefore VISA provides a

single addressing space, and a set of associated functions that operate on that space,

so that the programmer is given a familiar shared memory model of computation.

� Mapping Functions. In association with the single addressing space, VISA provides a

method for the compiler or programmer to specify \how" the data is to be distributed

across the memories for improved e�ciency. The idea is to distribute the data

structures in tight accordance with the distribution of parallel tasks, so that local

references are maximized. New analysis techniques [OH92, HKT92, GB92] can yield

the optimal distribution in restricted cases, and in these cases compilers could either

insert the communication code directly or pass the distribution information to a

runtime system like VISA in the form of a mapping function directive.

� Split-Phased Transactions. In Chapter 4, we introduced the design of multithreaded

task management, which relies on the ability to perform remote references as split-

phased transactions, where the request and reply phase are decoupled to allow for

thread switching between the two phases. VISA supports split-phased transactions

in support of the multithreaded task execution model.

The interaction of the VISA system with the other language components is depicted

in Figure 5.1. The compiler augments a parallel program with VISA primitives for allo-

cating and accessing the data structures to be kept in the single addressing space. Any

variables not placed in the VISA space are una�ected by the system. The augmented

program is then compiled using the native C compiler of choice, and linked with the VISA

library to create the object program, which can then be executed on a distributed memory

multiprocessor.

5.2 Message Passing Abstraction

All message passing required for accessing remote values is handled by the VISA

system through the use of a message passing abstraction, supporting both synchronous

(blocking) and asynchronous (non-blocking) operations. Since these operations are pro-

vided by most host operating systems for distributed memory multiprocessors, VISA can

be easily ported to other distributed memory multiprocessors by modifying the message

passing abstraction to make the proper native calls.

Speci�cally, the abstraction supports the following operations:

� WriteMsg, a non-blocking send abstraction used for point-to-point communication.

� Broadcast, a non-blocking send abstraction used for broadcasting information, such

as updates to replicated data structures. If not speci�cally supported by the under-

lying system, the Broadcast can be built from the WriteMsg primitive.

� ReadMsg, a blocking receive abstraction used for synchronous communication. Se-

lective message screening can be accomplished by specifying a message key, which is

composed of a message type and sender designator.
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Figure 5.2: The VISA addressing space

� MsgInterruptHandler, an asynchronous receive abstraction using interrupts. Asyn-

chronous message reception requires polling at some level to determine when a mes-

sage arrives and take appropriate action. Most systems, including the nCUBE/2,

provide hardware polling for incoming messages, resulting in a hardware trap that

is caught by the operating system, and then passed into the user-level in the form

of an interrupt. The interrupt causes a VISA message interrupt handler to deal

with the message. If the interrupt handler is allowed to be invoked at any arbitrary

time during the computation, it cannot modify the global state of the computation.

Therefore, either the interrupt handler must be selectively disabled during the times

when global data structures are accessed, or it must be prevented from modify-

ing global data structures. The former option requires the placement of expensive

system calls for enabling and disabling interrupts around all global data structure

accesses, which can be costly and error-prone. Therefore, the VISA system employs

the latter option: Any message requiring a global modi�cation is enqueued onto a

message list for handling outside of the scope of the interrupt handler.

5.3 Data Distribution

As depicted in Figure 5.2, the VISA address space is allocated in part of the local

memory of each participating node. This creates two types of addressing space for each

participating node in the system: a shared virtual addressing space that spans all of the

nodes, and a local address space for data visible only to the local node. Each data structure

allocated to the VISA space receives a contiguous set of virtual addresses that are shared

among the nodes and mapped onto physical addresses from each node.

Data distribution (or data decomposition) determines how the physical storage for a

global data structure is to be divided among the participating nodes. The goal is to divide

the data structure among the nodes so as to minimize the number of remote references

caused by the distribution. This implies that the distribution of data must be tied to

the access pattern of the parallel computation, and therefore data distribution needs to

be 
exible to support a wide variety of access patterns. For VISA, data distribution is

accomplished by dividing a data structure into a set of blocks, where each block contains

blocksize elements. The blocks are then allocated to the physical memories of the nodes

in round-robin fashion until all of the blocks have been distributed.

To facilitate a variety of distribution schemes, we assign a set of control parameters to

each data structure that de�ne the blocksize of each block, the start node to which the �rst

block is assigned, and the processor stride at which the blocks are distributed. These data

control parameters correspond to the task control parameters that are used to distribute
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Mapping Function blocksize start node stride replicate

scalar map n map arg 1 No

replicate map n Pid 1 Yes

block map n=p map arg 1 No

variable block map map arg P0 1 No

interleave map 1 map arg 1 No

Table 5.1: Control parameter settings for various 1D mapping functions

parallel tasks (see Table4.1), thus providing a uni�ed method for tying task distribution

to data distribution. A fourth control parameter for data structures speci�es whether or

not a data structure is to be replicated. Any data structure, from a single variable to an

entire array, can be replicated among the nodes in the VISA system. Replication is ac-

complished by allocating enough local storage from each node to accommodate the entire

structure, and broadcasting all writes to the data structure. Rather than implementing an

expensive coherence protocol, VISA assumes that the replicated data structures are con-

trolled by the compiler, where explicit synchronization can be provided which minimizes

the synchronization required while still maintaining a coherent system.

5.3.1 One-Dimensional Mapping Functions

Table 5.1 details the parameter settings for several one-dimensional mapping func-

tions, where the map arg is passed in from the allocation routine, typically specifying the

starting node. Most variables and structures are allocated using either the scalar map

or the replicate map, depending on the nature of the variable. For example, a structure

containing arguments for a parallel slice routine would be replicated to eliminate the re-

mote references required by each of the nodes executing the parallel slice, whereas a global

counter would be allocated using the scalar map to ensure consistency. Data arrays are

typically allocated using the block map, which provides an even distribution of the data

among the nodes in chunks that are often exploited by the contiguous loop structure of the

Sisal tasks. Arrays can also be replicated, and as we will see with two dimensional data

structures, the pointer array is replicated to eliminate the need for two remote references

when accessing an array element.

5.3.2 Multi-Dimensional Mapping Functions

The current Sisal compiler represents multi-dimensional data structures as structures

containing sub-structures. For example, a two-dimensional array is represented as an array

of pointers, where each element points to the location of a one-dimensional data structure

(see Figure 5.3). This is done to conform to the way in which multi-dimensional arrays are

represented in both Sisal and C
1
. Mapping functions for multi-dimensional arrays must

therefore consider both the pointer arrays as well as the data arrays. Pointer arrays are

1True multi-dimensional arrays in C are possible only if the array bounds are given at compile time
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Figure 5.3: Two-dimensional arrays in Sisal

Mapping Function blocksize start node stride replicate

matrix row map n map arg 1 No

matrix col map 1 map arg 1 Yes

matrix block map rbs � n=p map arg rbs No

Table 5.2: Control parameter settings for various 2D mapping functions

replicated to guarantee that accessing any element of a matrix will require at most one

remote reference.

Assuming that all pointer arrays are allocated using the replicate map, Table 5.2

details how the control parameters are established for each of the data arrays in a two-

dimensional matrix. The map arg for these mapping functions represents the starting

node, and is typically some function of i, corresponding to the ith row of the matrix. For

matrix row map, the map arg is typically set to i=(n=p), where n is the number of rows

and p is the number of processors. When the number of rows is equal to the number of

processors (n=p = 1), the ith row is placed on the ith processor, and when the number

of rows exceeds the number of processors, each processor gets a group of n=p contiguous

rows. However, if an interleaved row allocation is desired, the map arg can be set to imodp

instead. For matrix block map, the map arg is typically set to i=(n=rbs), where rbs is a

control parameter for the matrix block map function, and is �xed for a given number of

processors to allow for the proper layout of the blocks. Figure 5.4 depicts the distributions

for an 8x8 matrix on 4 processors using the matrix row map with contiguous rows and the

matrix block map with rbs = 2.

It is possible to create many di�erent mapping functions, given the ability to modify

the data control parameters. This general approach to data distribution is necessary to

accommodate the various access patterns that applications exhibit, and VISA allows the

user to add to the set of available mapping functions so that customized decompositions

are possible.

5.3.3 Speci�cation of Mapping Functions

Given a set of mapping functions for controlling the distribution of data structures,

there are various methods currently employed by other systems for selecting a mapping

function for a given data structure:
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Figure 5.4: matrix row map and matrix block map functions

� The compiler controls the distribution of data structures. This is the approach

taken by the parallelizing compiler camp [FHK
+
90, ZBG86]. The basic idea is to

distribute the data structures according to some distribution function, and then to

analyze the array subscripts to determine whether or not, for a particular thread,

a given reference is local or remote. If the reference is remote, the the appropriate

communication primitives are generated to retrieve the value at runtime. The dis-

tribution functions are formalized so that a compiler can make sense of them, and

this formalization is equally useful when considering other approaches.

� The compiler controls the distribution with the help of the programmer. This ap-

proach is an extension to the compiler controlled approach in that the programmer

helps the compiler in identifying the data access patterns by the use of pragmas,

which are source level compiler directives. Since the programmer may have a better

idea as to how the data will be accessed [HKT92], most compilers that perform the

data distribution for the programmer will accept these \hints" so that the proper

data distribution function can be selected.

� The compiler controls the distribution with the help of run-time pro�les [Sar89].

Again, this approach attempts to help the automated distribution process, but rather

than have the programmer tell the compiler how the data will be accessed, the

compiler simply \watches" several characteristic runs and notes the distribution

patterns used for those runs. The compiler then selects a distribution function that

will come closest to this observed reference behavior. The advantage this approach

has over the pragmas is that the programmer may be unaware of the reference

pattern, and thus be unable to help with the distribution. The disadvantage is that

if the pro�led runs are not characteristic of the actual reference patterns, or if the

reference patterns vary with the input data, then this approach may be misleading.

� The programmer controls the distribution explicitly. Since all of the above techniques

require intelligent compilers that are not always (or often) available, a common

technique for distributing data is for the programmer to explicitly distribute the

data and then insert the appropriate communication primitives into the source code,
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all \by hand." Though this approach requires very little software support (only the

message passing interface is needed), the user is required to determine the access

patterns and then distribute the data accordingly using explicit message passing

primitives. Clearly this contradicts the e�orts of raising programming to a higher

level of abstraction.

The VISA approach to this complex problem is to provide a comprehensive set of

mapping functions that are representative of common scienti�c data access patterns, and

allow for the user to create new mapping functions as needed, such that the mapping

function establishes the desired values of the control parameters. The mapping function

is then speci�ed upon requesting memory from the single addressing space using the

visa malloc function. This allows a compiler that is generating the VISA primitives to

invoke visa malloc with the desired mapping function, either obtained from analysis or

through user directives. Likewise, a programmer using the VISA primitives directly can

select the desired mapping function for each data structure without having to specify the

actual message passing details necessary for implementing such a distribution scheme.

5.4 General Address Translation

Address translation is the process of obtaining the physical address of a datum given

its virtual address. For a distributed memory multiprocessor, a physical address consists

of the tuple (node, o�set), where node is a node designator and o�set is the physical

address within that node. Since VISA employs a block-based addressing scheme, where

the blocksize, starting node, and stride may all vary, it is necessary to store these control

parameters, along with other information about each data structure, in a descriptor called

a range map entry. The entire VISA space is therefore described by the collection of these

entries, called the range map table. The term \range" refers to the fact that, since all

data structures are assigned contiguous addresses in both virtual and physical spaces, the

range (low, high) is su�cient to represent all of the addresses within a data structure. To

ensure local access of the range map entries, the range map table is replicated. There is

no coherence problem, since each range map entry is written only once (upon creation by

visa malloc).

In addition to the data distribution control parameters, each range map entry (de-

picted in Figure 5.5) contains three address ranges for each data structure:

� The visa base represents the range of global virtual (VISA) addresses for this data

structure.

� The local base represents the range of local physical addresses of the blocks that are

allocated for this data structure.

� The optimized base represents the optimized range of global addresses, as explained

in Section 5.5.

After a data structure has been distributed with the visa malloc routine, access re-

quires a translation from the virtual VISA address to the physical address tuple (node,

o�set), which proceeds as follows:

� The range map entry for the desired data structure is fetched by the �nd rm()

routine, which is exposed to the compiler so that the range map entry for a data

structure that is to be accessed many times need only be fetched once.
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Field Function

visa base The range of global virtual addresses

local base The range of local physical addresses for locally-owned blocks

optimized base The range of optimized virtual addresses

nelems The number of elements

size The size of each element

blocksize The blocksize (elements per block) used for distribution

start node The node ID on which to begin distributing the blocks

stride The stride at which to distribute the blocks

replicate A boolean to determine if this data structure is replicated

table index The index into the range map table for this entry

next A utility pointer

Figure 5.5: Description of a range map entry

� From a virtual address, the relative element position within the data structure

(element) is computed:

element = address - low range

� Next, the block which contains the desired element is computed:

block = element / blocksize

� Next, the relative o�set of the desired element within this block is computed:

block offset = element mod blocksize

� Next, the node which owns the desired block is computed. If the replicate 
ag

is set, then the computed node always equals the local node designator, indicating

that each node has a copy of the desired block. Otherwise, we compute:

node = (start node + (block * stride)) mod P

where P is the number of participating nodes.

� If the number of blocks for this data structure exceeds the number of participating

nodes, then some (or all) of the nodes will own multiple blocks. Next, the relative

block number within the desired node is computed:

node block = block / P

� Next, the relative o�set of the desired element within the desired node is computed:

rel offset = node block * blocksize + block offset

� If the access is local (i.e. node is equal to the local node designator) the rel offset

is incremented by the local base from the range map entry to produce the actual

o�set in local physical memory, since local base contains the address of the �rst byte

for this structure:

offset = rel offset + local base.
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� If the access is remote, a message is sent to the computed node, requesting that

the desired datum be fetched and returned. For multithreading support, this is

implemented as a split-phased transaction, where the �rst phase involves a sending

a request to the desired node and the second phase involves waiting for a reply.

When multithreading is enabled, a thread scheduler is invoked between these two

operations to start another parallel thread while the request is being processed.

Refer to Section 4.5 for a more detailed description of multithreading and split-

phased transactions.

An alternative to this address translation scheme is to have a �xed blocksize, start

node, and stride for every data structure. For example, consider a virtual addressing space

with addresses 0 : : :15 and a �xed blocksize of 2 distributed over 4 nodes as follows:

PE0 PE1 PE2 PE3

0 2 4 6

1 3 5 7

8 10 12 14

9 11 13 15

The virtual to physical address calculation is then:

� block = address / fixed blocksize

� block offset = address mod fixed blocksize

� node block = block / P

� node = block mod P

� offset = node block * fixed blocksize + block offset

If the �xed blocksize and number of nodes (P) are powers of two, the binary repre-

sentation of the virtual address can be interpreted as consisting of three bit �elds:

| node_block | node | block_offset |

The result is a virtual address from which the physical address tuple can be obtained

by an examination of the virtual address bit �elds. This type of translation would typically

be done in hardware by the memory management unit to provide for very fast address

translation. However, since the nCUBE/2 lacks the ability to perform this translation in

hardware, we have implemented this �xed blocksize address translation scheme to compare

with the VISA general address translation scheme. Chapter 7 contains the results of this

experiment.
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Figure 5.6: Sample VISA data structure with computed optimized base values

5.5 Optimized Address Translation

One of the �rst things we noticed about the VISA address translation scheme is that

the overhead for translation is minimal when compared with the time required to perform

a remote reference, but dominates the time required for a local reference. In addition to

exposing the routine which �nds a desired range map entry so that range map entries can

be stored locally to avoid repeated searching of the range map table, we have designed

and implemented an optimization that eliminates the need for an address translation when

the access is local. We introduce a new function, called visa opt, which re-writes the vir-

tual base address with the structure's optimized base address, and establishes a pair of

\water mark" registers to hold the low and high values of the range corresponding to the

local base. The optimized base is the local base minus the o�set necessary to generate

a global address that will result in a local access. For example, suppose an array of 40

integers (4 bytes each) is allocated using block map among 4 nodes, as depicted in Fig-

ure 5.6, where the local base values can be di�erent for each node, which is possible since

each node manages its local memory independently of the other nodes. Each processor

would allocate local storage for blocksize = 10 elements (40 bytes), and set the local base

accordingly. If, for example, the third node wishes to optimize the base address for this

structure, then the optimized value is the local base minus 20 elements (80 bytes), corre-

sponding to the two blocks of 10 elements each that proceed it in the distribution. Once

the base address for a structure has been optimized, any further access to this structure,

represented as some o�set from the base, will be checked against the low and high water

marks. If the computed address falls within the water marks, then the access can proceed

without translation, otherwise the address is passed along to the VISA access routines

for general address translation and proper remote handling. Special macros are de�ned

to perform the water mark checks, so that the total overhead for a local access has been

reduced to the time required for three comparisons.



Chapter 6

SAMPLE PROGRAMS

There never has been, nor will there ever be,

any programming language in which it is the

least bit di�cult to write bad code.

{ Lawrence Flon

In this chapter we introduce the set of sample programs that will be used to conduct

a variety of experiments with our runtime system, as detailed in Chapter 7. The pro-

grams were selected to highlight a particular aspect of the runtime system design, such as

loop distribution, data distribution, or multithreading. We present the mathematics and

algorithm of each program, the corresponding Sisal code, and the characteristics of the

problem, leading to an explanation as to why it was included in the suite.

We note that the programs in our suite are relatively simple programs, often termed

\kernels," and not large, involved \benchmarks." The decision to restrict our attention

to simple problems and exclude large benchmarks is twofold:

1. We require the programs to be small enough to reason about their individual behav-

ior, in terms of parallelism and data access patterns. This is necessary to properly

analyze the e�ects of our various designs, without which we are left with just num-

bers.

2. The current Sisal compiler (OSC V12.0) lacks both the ability to generate the VISA

primitives and the ability to treat a rectangular array as a single data structure,

rather than a collection of lower-dimensional data structures. Therefore, imple-

menting large benchmark programs would require a substantial amount of work to

insert the necessary VISA primitives and, assuming the benchmark employed multi-

dimensional arrays, would result in poor performance. This teaches us very little

about the system and the performance of these programs.

6.1 Purdue #1

6.1.1 Problem Description and Algorithm

Purdue Parallel Benchmark #1 [Ric85] approximates the value of the integral of f(x)

in the interval [a,b] using the trapezoidal rule:

TN = h � (
f(a) + f(b)

2
+

N�1X
i=1

f(a+ i � h))

where N is the number of intervals in for the estimate and, h = (b � a)=N . Increasing

N usually improves the accuracy. For our implementation, we compute

R �
0 sin(x), where



61

sin(x) is computed using a Taylor series of fourteen terms (
x1

1!
� x3

3!
+ : : :� x27

27!
), resulting in

55 
oating-point operations per invocation and matching the precision of the nCUBE/2

system sin function.

6.1.2 Sisal Code for Purdue #1

% purdue1.sis

define main

global sin (x: double_real returns double_real)

function f (x: double_real returns double_real)

let

a := x * x;

b := x * a / double_real(6.0);

c := b * a / double_real(20.0);

d := c * a / double_real(42.0);

e := d * a / double_real(72.0);

f := e * a / double_real(110.0);

g := f * a / double_real(156.0);

h := g * a / double_real(210.0);

i := h * a / double_real(272.0);

j := i * a / double_real(342.0);

k := j * a / double_real(420.0);

l := k * a / double_real(506.0);

m := l * a / double_real(600.0);

n := m * a / double_real(702.0);

in

x - b + c - d + e - f + g - h + i - j + k - l + m - n

end let

end function % f

function main (a,b: double_real; n: integer returns double_real)

let

h := (b-a)/double_real(n);

ans := for i in 1,(n-1)

returns value of sum f(a+double_real(i)*h)

end for

in

h * (ans + (double_real(0.5) * f(a)) + (double_real(0.5) * f(b)))

end let

end function % main
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6.1.3 Program Characteristics

Purdue #1 contains a large, 
at, parallel loop in which

N�1X
i=1

f(a+ i � h)

is computed. Since there are no arrays, this problem isolates the e�ectiveness of loop

distribution.

6.2 Purdue #2

6.2.1 Problem Description and Algorithm

Purdue Parallel Benchmark #2 [Ric85] computes e� by:

e� =

nX
i=1

mY
j=1

(1 + e(�ji�jj)
)

6.2.2 Sisal Code for Purdue #2

% purdue2.sis

define main

global etothe (a: double_real returns double_real)

function abs (a: integer returns integer)

if (a < 0) then -a else a end if

end function % abs

function main (n,m: integer returns double_real)

for i in 1,n

p := for j in 1,m

returns value of product (double_real(1.0) +

etothe (-double_real(1.0) * double_real (abs(i - j))))

end for

returns value of sum p

end for

end function % main

6.2.3 Program Characteristics

Purdue #2 computes a sum-of-products, allowing us to explore the di�erent distri-

bution options for nested parallel loops. With no arrays in this problem, we can isolate

the e�ectiveness of our various nested task distribution techniques.

6.3 Lawrence Livermore Loop #1
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6.3.1 Problem Description and Algorithm

This program [Feo87] creates an array X from input arrays Y and Z, and constants

Q, R, and T , where Xi is de�ned as:

Xi = Q+ (Yi � (R �Zi+10 + T � Zi+11))

6.3.2 Sisal Code for Lawrence Livermore Loop #1

% lll1.sis

define main

type OneD = array[double_real]

function loop1 (n: integer; Q,R,T: double_real; Y,Z: OneD returns OneD)

for K in 1,n

X := Q + (Y[K] * (R * Z[K+10] + T * Z[K+11]))

returns array of X

end for

end function % loop1

function main (n: integer; Q,R,T: double_real returns OneD)

let

Y := array_fill (1,n,double_real(2.0));

Z := array_fill (1,n+11,double_real(2.0));

in

loop1 (n, Q, R, T, Y, Z)

end let

end function % main

6.3.3 Program Characteristics

This program creates two initial arrays of di�erent sizes (Y and Z), which are then

used to create the resulting array (X), which is the same size as the smaller of the input

arrays (Y ). This allows us to manipulate the blocksize for the arrays and measure the

di�erence in performance when various blocksizes are applied. Also, with a high degree

of locality, this program highlights the overheads of multithreading when very few remote

references are present.

6.4 Lawrence Livermore Loop #7

6.4.1 Problem Description and Algorithm

This program [Feo87] creates an array A from an input array B and constants R, T ,

C1, and C2, where Ai is de�ned as:

Ai = Bi +R � C1 + R2 � C2 + T �Bi+3 + T �R �Bi+2 + T �R2 �Bi+1 +

T 2 �Bi+6 + T 2 �R �Bi+5 + T 2 �R2 �Bi+4
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6.4.2 Sisal Code for Lawrence Livermore Loop #7

% lll7.sis

define main

type OneD = array[double_real]

function loop7 (n: integer; R,T: double_real; U,Y,Z: OneD returns OneD)

for k in 1,n

returns array of U[k] + R * (Z[k] + R * Y[k]) +

T * (U[k+3] + R * (U[k+2] + R * U[k+1]) +

T * (U[k+6] + R * (U[k+5] + R * U[k+4])))

end for

end function % loop7

function main (n: integer; R,T: double_real returns OneD)

let

U := array_fill (1,n+6,double_real(2.0));

Y := array_fill (1,n,double_real(3.0));

Z := array_fill (1,n,double_real(4.0));

in

loop7 (n, R, T, U, Y, Z)

end let

end function % main

6.4.3 Program Characteristics

With very little task management required, this problem highlights the di�erent mem-

ory management and multithreading techniques. In particular, the di�erent array sizes

presents the possibility of controlling the distribution of these various arrays for optimal

performance.

6.5 Successive Over-Relaxation (SOR)

6.5.1 Problem Description and Algorithm

Successive over-relaxation (SOR) performs a \smoothing" operation on an array by

iterating over the array and computing each new Ai element as follows:

Ai =

(
A0

i if i = 1 or i = n

(A0

i�1 + A0

i +A0

i+1)=3:0 otherwise

where A represents the current iteration and A0
represents the previous iteration.

6.5.2 Sisal Code for SOR
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% sor.sis

define main

type OneD = array[double_real]

function sor (n,k: integer; A: OneD returns OneD)

for initial

V := A; loop := 0;

repeat

loop := old loop + 1;

V := array[1:1.0e0]

||

for i in 2,n-1

el := (old V[i-1] + old V[i] + old V[i+1]) / 3.0e0

returns array of el

end for

||

array[1:double_real(n)]

until loop=k

returns value of V

end for

end function % sor

function main (n,k: integer returns OneD)

let

A := for i in 1,n

el := if mod (i,2) = 0 then 1.0e0 else double_real(n) end if

returns array of el

end for

in

sor (n, k, A)

end let

end function % main

6.5.3 Program Characteristics

The access pattern for SOR is �xed over all of the iterations. The outer iterative loop

in this program provides a method of controlling the amount of synchronization required,

thus highlighting the di�erent task management options.

The Sisal compiler allocates the initial array and two additional arrays that are used

as \swap" arrays, where one represents the current iteration and the other represents the

previous iteration. This optimization, which is a form of build-in-place [Can89], removes

the need to create a new array for each loop iteration as the functional semantics imply.

Therefore, the two swap arrays need to be distributed in accordance with the input array

to maintain the minimal number of remote references.

6.6 Parallel Pre�x
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6.6.1 Problem Description and Algorithm

A parallel pre�x computation is de�ned in terms of a binary, associative operator 

[CLR91]. The computation takes as input the sequence hx1; x2; : : : ; xni and produces as

output the sequence hy1; y2; : : : ; yni such that y1 = x1 and

yk = yk�1 
 xk

= x1 
 x2 
 � � � 
 xk

for k = 2; 3; : : : ; n. Thus yk is obtained by applying the operator 
 in the �rst k elements

in the sequence of xk, hence the term \pre�x". For our pre�x program, we have selected

addition as the binary, associative operator, and thus we are computing

yk =

kX
i=1

xi

6.6.2 Sisal Code for Parallel Pre�x

% pprefix.sis

define main

type OneD = array[double_real]

function prefix (n: integer A: OneD returns OneD)

for initial

v := A; d := 1;

repeat

d := 2 * old d;

v := for i in 1,n

el := if i+ old d > n then old v[i]

else old v[i] + old v[i+old d]

end if

returns array of el

end for

until d >= n

returns value of v

end for

end function % prefix

function main (n: integer returns OneD)

let

A := array_fill (1,n,1.0)

in

prefix (n, A)

end let

end function % main
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6.6.3 Program Characteristics

Parallel pre�x performs a logarithmic number of iterations over the initial array in

which the access pattern changes for each iteration. Speci�cally, the computation of yi in

the current iteration makes reference to the values yi and yi+d in the previous iteration,

where d is a \distance" variable that starts at 1 and increases by a factor of two for each

subsequent iteration. Thus, when d is greater than the distribution blocksize of the initial

array, references to yi+d are remote for all yi.

Parallel pre�x represents a problem class in which a large amount of remote references

are incurred despite a good initial distribution of the data. Therefore, as latency avoidance

is hampered by the variable access pattern, latency tolerance becomes more critical, and

this problem highlights the ability of multithreading to e�ectively tolerate unavoidable

remote reference latencies.

As with SOR, the Sisal compiler allocates a set of swap arrays instead of generating

a separate array for each iteration. Thus the swap arrays are distributed in accordance

with the input array.

6.7 Fast Fourier Transform (FFT)

6.7.1 Problem Description and Algorithm

A Discrete Fourier Transform is used to evaluate a polynomial

A(x) =

n�1X
j=0

ajx
j

of degree n at the roots of unity !0
n; !

1
n; : : : ; !

n�1
n . Assuming that A is given in coe�cient

form: a = (a0; a1; : : : ; an�1), the result yk, for k = 0; 1; : : : ; n� 1, is de�ned as

yk = A(!kn)

=

n�1X
j=0

aj!
kj
n

The y vector is the Discrete Fourier Transform of the coe�cient vector, a, written as

y = DFTn(a).

The Fast Fourier Transform (FFT) takes advantage of the special properties of the

complex roots of unity to compute the Discrete Fourier Transform of a coe�cient vector

in time �(n lg n) as opposed to the �(n2) time of the straightforward DFT. The FFT

employs a divide-and-conquer strategy, using the even-index and odd-index coe�cients of

A(x) separately to de�ne two new degree n=2 polynomials A[0]
(x) and A[1]

(x):

A[0]
(x) = a0 + a2x+ a4x

2
+ � � �+ an�2x

n=2�1;

A[1]
(x) = a1 + a3x+ a5x

2
+ � � �+ an�1x

n=2�1:

The problem of evaluating A(x) at !0
n; !

1
n; : : : ; !

n�1
n reduces to evaluating the degree n=2

polynomials A[0]
and A[1]

at the points

(!0
n)

2; (!1
n)

2; : : : ; (!n�1
n )

2;
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and then combining the results according to the equation

A(x) = A[0]
(x2) + xA[1]

(x2):

This method recursively divides the n-element DFTn computation into two n=2-

element DFTn=2 computations to compute the DFT of an n-element vector a, where n is

a power of 2.

For our implementation of this algorithm, we select an iterative version of FFT

[CLR91], since the recursive version minimizes the loop parallelism and maximizes the

function parallelism.

6.7.2 Sisal Code for FFT

% fft.sis

define main

type cmplx = record [real: double_real; imag: double_real];

type AC = array[cmplx];

type AR = array[double_real]

global sin (x: double_real returns double_real)

global cos (x: double_real returns double_real)

function add_c (a,b: cmplx returns cmplx)

record cmplx [real: a.real + b.real; imag: a.imag + b.imag]

end function % add_c

function sub_c (a,b: cmplx returns cmplx)

record cmplx [real: a.real - b.real; imag: a.imag - b.imag]

end function % sub_c

function mul_c (a,b: cmplx returns cmplx)

record cmplx [real: a.real * b.real - a.imag * b.imag;

imag: a.imag * b.real + a.real * b.imag]

end function % mul_c

function iter_shuffle (A: AC returns AC)

let

n := Array_Size(A);

in

for i in 1,n

bitrev := for initial

x := n/2; y := 0 ; b := i-1;

while x ~= 0 repeat

y := if mod(old b,2) = 1 then

old y + old x

else
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old y

end if;

x := old x / 2;

b := old b / 2

returns value of y

end for + 1

returns array of A[bitrev]

end for

end let

end function % iter_shuffle

function fft (A: AC returns AC)

let

n := array_size(A)

in

for initial

m := 2; B := A;

while n >= m repeat

hm := old m / 2; ndm := n / old m; OB := Old B; om := old m;

B := for j in 0, ndm-1

L,R := for i in 1,hm

x := 6.28318 / double_real(om);

pi := mul_c (record cmplx[

real: cos (x*double_real(i-1));

imag: -sin (x*double_real(i-1))],

OB[j*om + hm + i]);

li := OB[j * om + i];

Ti := add_c (li,pi);

Bi := sub_c (li,pi)

returns array of Ti array of Bi

end for;

LR := L || R;

returns value of catenate LR

end for;

m := old m * 2

returns value of B

end for

end let

end function % fft

function main (n: integer returns AC)

let

h := n/2;

C := for i in 1,n

returns array of record cmplx[real: double_real(i); imag: 0.0]

end for

in

fft (iter_shuffle(C))
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end let

end function % main

6.7.3 Program Characteristics

The one-dimensional iterative FFT algorithm makes successive passes over an array,

where the access pattern changes with each iteration, in a fashion that is similar to the par-

allel pre�x problem. Since the variable access pattern will disrupt any initial distribution

of the data, this problem will highlight the e�ectiveness of multithreading at tolerating

unavoidable remote references.

This FFT implementation redistributes the array elements using a bit-reversal of

the array index and then combines the intermediate array elements in lg n \butter
y"

computations, where the size of the butter
y doubles at each stage. The Sisal compiler

is able to determine that the sub-arrays �t into one result array, and thus pre-builds the

sub-arrays \in-place," so that copying the sub-arrays into the �nal array is avoided. This

is another example of the powerful build-in-place analysis that is performed by the current

Sisal compiler [Can89]. However, the compiler does perform the updates in place, and

thus allocates a new array for each of the logarithmic iterations, accounting for a large

amount of message broadcasting at each iteration to remove the old array and allocate a

new array. Also, the arrays are allocated in \ragged" fashion, which means that various

o�sets into the array are passed into the slices as the starting array addresses. This poses

a problem for the VISA system, which attempts to locate the range map entry for a data

structure given the real base address for the structure, not some o�set into that structure.

A solution to this problem is to delay the o�set computation until after the array has been

passed to the slices so that each slice can fetch the range map entry using the actual base

address and then update the base address using an o�set that is now also passed to each

slice.

6.8 Laplace

6.8.1 Problem Description and Algorithm

Whereas SOR is a \smoothing" algorithm using a three-point stencil over a one-

dimensional array, Laplace is a smoothing algorithm that uses a �ve-point stencil over a

two-dimensional array. Speci�cally, each new Ai;j element is computed as follows:

Ai;j =

(
A0

i;j if i = 1, i = n, j = 1, j = n

A0

i;j=2:0 + (A0

i�1;j +A0

i+1;j + A0

i;j�1 + A0

i;j+1)=8:0 otherwise

where A represents the current iteration and A0
represents the previous iteration.

6.8.2 Sisal Code for Laplace

% laplace.sis

define main

type OneD = array[double_real];
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type TwoD = array[OneD];

function 2d_fill (N: integer returns TwoD)

for I in 1,N cross J in 1,N

el := if mod(I+J,2) = 0 then

double_real(1.0)

else

double_real(N)

end if

returns array of el

end for

end function % 2d_fill

function laplace (Init_M: TwoD; N,KMax: integer returns TwoD)

for initial

K := 1;

M := Init_M

repeat

K := old K + 1;

M := for I in 1,N cross J in 1,N

nM := if I=1|I=N|J=1|J=N then

old M[I,J]

else

old M[I,J] / double_real(2.0) +

(old M[I-1,J] + old M[I+1,J] + old M[I,J-1] +

old M[I,J+1]) / double_real(8.0)

end if

returns array of nM

end for

until K >= KMax

returns value of M

end for

end function % laplace

function main (N,K : integer returns TwoD)

let

A := 2d_fill (N)

in

laplace (A, N, K)

end let

end function % main

6.8.3 Program Characteristics

This problem highlights two-dimensional Sisal arrays, mapping functions, and the

ability to combine task distribution with data distribution at a multi-dimensional level.

The mapping functions attempt to minimize the edges (or boundary elements) in the

distribution, since boundary elements require remote references. The �ve-point stencil also
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implies more remote references than SOR, giving multithreading the chance to tolerate

these latencies.

Since the Sisal compiler does not support true rectangular arrays, the matrix in this

program is implemented as an array of rows, where each row is a one-dimensional array

of values. Also, each Sisal array is represented using three data structures, two descriptor

structures and the actual array, and each of these data structures is placed into VISA

space, requiring an additional VISA descriptor for each. Thus, for an n � n matrix, the

Sisal compiler generates 6n+6 data structures, 5n+5 of which are replicated. Finally, since

Laplace is an iterative algorithm, the compiler generates two additional swap matrices,

bringing the total data structure count for the program to 3(6n+6), of which 3(5n+5) are

replicated across all nodes. As we will see in Chapter 7, handling multi-dimensional arrays

in this manner has a profoundly detrimental e�ect on the performance of the program.

6.9 Matrix Multiplication

6.9.1 Problem Description and Algorithm

Matrix multiplication computes C = A�B, where A, B, and C are all n�n matrices.

Speci�cally, Ci;j is computed as:

Ci;j =

nX
k=1

Ai;k �Bk;j

6.9.2 Sisal Code for Matrix Multiply

% matmult.sis

define main

type OneD = array[double_real];

type TwoD = array[OneD];

function 2d_fill (n: integer; v: double_real returns TwoD)

for i in 1,n cross j in 1,n

returns array of v

end for

end function % 2d_fill

function matmult (n: integer; A,B: TwoD returns TwoD)

for i in 1,n cross j in 1,n

returns array of

for k in 1,n

returns value of sum A[i,k] * B[k,j]

end for

end for

end function % matmult

function main (n: integer; v1,v2: double_real returns TwoD)
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let

A := 2d_fill (n, v1);

B := 2d_fill (n, v2);

in

matmult (n, A, B)

end let

end function % main

6.9.3 Program Characteristics

Matrix multiplication highlights the two-dimensional mapping functions as well as

the multithreading system. As with the other two-dimensional programs, the Sisal com-

piler generates an enormous number of data structures to accommodate the three two-

dimensional data structures used in Matrix Multiply.

6.10 Cholesky Factorization

6.10.1 Problem Description and Algorithm

A system of n linear equations and n unknowns can be written in the form Ax = b,

where A is the matrix of equations, x is the vector of unknowns, and b is the vector of

solutions. We say that A has an LU-decomposition if A can be factored into a lower

triangular matrix L and an upper triangular matrix U , such that A = LU . When U

= LT so that lii = uii for 1 � i � n, the factorization algorithm is called Cholesky's

factorization, after the mathematician Andr�e Louis Cholesky, who proved that if A is a

real, symmetric, and positive de�nite matrix, then it has a unique factorization A = LLT ,

in which L is a lower triangular with a positive diagonal.

Cholesky's factorization algorithm follows:

1. First, the diagonal elements of L are computed as:

lkk =

 
akk �

k�1X
s=1

l2ks

!1=2

for k = 1; 2; : : : ; n.

2. Then, using each of the computed diagonal elements, the lower triangular elements

are computed as:

lik =

 
aik �

k�1X
s=1

lislks

!
=lkk

for i = k + 1; k+ 2; : : : ; n.

6.10.2 Sisal Code for Cholesky Factorization

% cholesky.sis

define main
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type OneD = array[double_real];

type TwoD = array[OneD];

global sqrt (x: double_real returns double_real)

function cholesky (n: integer; A,LL: TwoD returns TwoD)

for initial

col := 1;

diag := double_real(1.0);

L := LL;

while (col <= n) repeat

col := old col + 1;

diag := Sqrt (A[old col,old col] -

for k in 1,old col - 1

returns value of sum (old L[old col,k] * old L[old col,k])

end for);

L := for i in 1,n cross j in 1,i

returns array of

if (i = j) & (j = old col) then

diag

else if j = old col then

(A[i,j] - for k in 1,j-1

returns value of sum (old L[i,k] * old L[j,k])

end for) / diag

else

old L[i,j]

end if

end if

end for;

returns value of L

end for

end function % cholesky

function main (n: integer returns TwoD)

let

LR := array_fill(1,n,double_real(0.0));

L := array_fill(1,n,LR);

A := for i in 1,n cross j in 1,i

returns array of

if i=j then

double_real((n+i+j)*(n+i+j))

else

double_real(i+j)

end if

end for

in

cholesky (n,A,L)

end let
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end function % main

6.10.3 Program Characteristics

This program highlights the e�ectiveness of data distribution for a lower triangular

array problem, and the ability of multithreading to tolerate the remote reference latencies.

The triangular matrix is created as a Sisal two-dimensional array, where the size of the

rows varies from 1 element to n elements. As Laplace and Matrix Multiply, Cholesky

su�ers from the problems of Sisal two-dimensional data structures. Additionally, as the

Cholesky algorithm iterates through the columns, a new triangular matrix is allocated

and the old triangular matrix is freed.



Chapter 7

EXPERIMENTAL RESULTS AND ANALYSIS

The purpose of computing is insight,

not numbers.

{ R.W. Hamming

In this chapter we present a set of experiments used in evaluating the various design

aspects of the VISA runtime system. In evaluating the performance of our sample pro-

grams, which are detailed in Chapter 6, we must choose an input problem size for the

programs to use. When arrays are used, a �xed input size introduces the problem that

a size which �ts into a single node's memory is not large enough to saturate an order of

magnitude larger machine con�guration, and an array size that saturates a larger machine

con�guration often doesn't �t in a single node's memory. Therefore, for programs utilizing

arrays, we will create three processor con�guration groups: 1,2,4, and 8 nodes, 4,8,16, and

32 nodes, and 16, 32, 64, and 128 nodes. We will use the same array size within each

group, but will use increasingly larger array sizes between the groups. We will measure

the e�ciency of our programs relative to the smallest con�guration in each group, and

call this measure the relative e�ciency (RE�).

7.1 Task Management Techniques

7.1.1 Task Management for Flat Loops

We compare the single-level and multi-level loop distribution schemes for a large un-

nested (
at) loop by measuring the performance of the Purdue Parallel Benchmark #1.

Table 7.1 displays the execution times for this program, which ran for 10
7
iterations,

where Sp represents the parallel speedup (T1=Tn) and E� represents the parallel e�ciency

(Sp=n). These execution times compare favorably to the single processor sequential C

program that performs the same computation in 414.96 seconds. The disparity in single

processor execution time between Sisal and C results from the fact that the Sisal compiler

generates very e�cient C code that is often easier for the native C compiler to optimize

than hand-coded C programs.

Fan-out corresponds to the number of sub-master processes used in multi-level dis-

tribution, and OFO in Table 7.1 represents the optimal fan-out degree for each machine

con�guration. Fan-out provides a means to control the amount of overhead for multi-level

distribution (exempli�ed by the sequential loop in the master process that distributes

the sub-tasks), versus the gain of having the sub-masters distribute the slices in parallel.

Figure 7.1 depicts this tradeo� for all possible fan-out degrees on 512 processors, where a

fan-out degree of 1 represents single-level distribution. In the fan-out region [1::8] there

is not enough sub-master parallelism, whereas in the fan-out region [128::512] there is

too much overhead. A fan-out degree about equal to the square root of the number of
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single-level distribution multi-level-distribution

PEs Time (s) Sp E� (%) OFO Time (s) Sp E� (%)

1 355.8472 1.00 100

2 177.9336 2.00 100 2 177.9343 2.00 100

4 88.9698 4.00 100 2 88.9701 4.00 100

8 44.4940 8.00 100 2 44.4932 8.00 100

16 22.2639 15.98 100 4 22.2601 15.99 100

32 11.1649 31.87 100 4 11.1538 31.90 100

64 5.6461 63.03 98 8 5.6207 63.31 99

128 2.9484 120.69 94 8 2.8936 122.98 96

256 1.7236 206.46 81 16 1.6084 221.24 86

512 1.7582 202.39 40 32 1.3961 254.89 50

Table 7.1: Performance of Purdue #1, single and multi-level distribution

processors appears to be most e�ective for most applications, and is currently the default

in our system.

Table 7.1 shows that the e�ciency of this application using both single-level distri-

bution and multi-level distribution is 100% up to 32 processors. For higher numbers of

processors, the e�ciency starts to decrease, getting much worse for 256 and 512 proces-

sors, especially for single-level-distribution. Thus, for this program, 64 processors is the

point at which the overhead for sequentially distributing the loop slices starts to have a

noticeable detrimental e�ect on the performance, and multi-level distribution is able to

recapture some of the lost performance by parallelizing the distribution phase. For 256

and 512 processors, the gain is substantial: 5% and 10% e�ciency, respectively.

Table 7.1 also re
ects the e�ect that the ratio of computation time to communication

time can have on the performance of the program. As we double the number of processors,

the computation time of each parallel slice is halved, since the same number of loop bodies

are now distributed over twice the number of loop slices, and the communication time is

doubled, since there are now twice the number of loop slices to be distributed and twice

the number of intermediate values to be reduced. Thus the ratio of computation time

to communication time, which determines the e�ciency of an application, is reduced by

a factor of four each time the number of processors is doubled. We can see the e�ect

of this diminishing ratio in the e�ciency for 256 and 512 processors. Multi-level distri-

bution reduces the rate at which the communication time increases, thus decreasing the

rate at which e�ciency is lost. If the initial loop-body computation time were reduced,

the ratio would be more dependent on the communication time increase rather than the

computation time decrease, and thus the e�ect of multi-level distribution on slowing the

declining e�ciency would be greater. To see this e�ect, we reduce the Taylor series from

14 terms to 7 terms, e�ectively halving the computation time for each loop iteration. The

results of this experiment are displayed in Table 7.2. Comparing the gain in e�ciency

for multi-level distribution with the �rst experiment (Table 7.1), we see that the gain is

increased. Given this performance gain, and the ability to employ multi-level distribution

along with the other runtime options (such as multithreading), we will typically employ

multi-level distribution for most of our sample programs, particularly in the last processor

con�guration grouping (16::128 processors).



78

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Fan-Out Degree

1 2 4 8 16 32 64 128 256 512

Figure 7.1: Performance of Purdue #1 on 512 processors, various fan-out degrees

single-level distribution multi-level-distribution

PEs Time (s) Sp E� (%) OFO Time (s) Sp E� (%)

1 149.8411 1.00 100

2 74.9305 2.00 100 2 74.9309 2.00 100

4 37.4680 4.00 100 2 37.4684 4.00 100

8 18.7430 7.99 100 2 18.7424 7.99 100

16 9.3885 15.96 100 4 9.3846 15.97 100

32 4.7272 31.70 99 4 4.7161 31.77 99

64 2.4273 61.73 96 8 2.4017 62.39 97

128 1.3394 111.87 87 8 1.2842 116.68 91

256 0.9194 162.98 64 16 0.8029 186.83 73

512 1.3551 110.58 22 16 0.9155 163.67 32

Table 7.2: Performance of Purdue #1, 1=2 Taylor series
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Sequential Fully-Distributed Partially-Distributed

PEs Time (s) Sp E� Time (s) Sp E� Time (s) Sp E�

1 296.6874 1.00 100

2 148.3511 2.00 100 147.9001 2.00 100 148.3511 2.00 100

4 74.1801 4.00 100 74.0986 2.00 100 74.1801 2.00 100

8 37.0962 8.00 100 37.2061 7.97 100 37.0962 8.00 100

16 18.5605 15.98 100 18.9324 15.67 98 18.5605 15.98 100

32 9.3051 31.58 100 9.9582 29.79 93 9.3051 31.58 100

64 4.7005 63.12 99 5.8988 50.30 79 4.7005 63.12 99

128 4.7090 63.00 49 4.0136 73.92 58 3.5198 84.29 66

256 4.7261 62.78 25 4.1539 71.42 28 3.5128 84.46 33

512 4.7601 62.33 12 6.9894 42.45 8 5.1946 57.11 11

Table 7.3: Performance of Purdue #2, various inner loop distribution schemes

7.1.2 Task Management for Nested Loops

We now examine the e�ects of the nested loop distribution schemes, as de�ned in

Table 4.1, on the performance of Purdue Parallel Benchmark #2. Table 7.3 gives the

performance numbers for inputs n = 64 and m = 524288 (2
19
), where Sequential, Fully-

Distributed, and Partially-Distributed describe the inner loop distribution scheme, Sp is

the parallel speedup, and E� is the parallel e�ciency (%). We intentionally select a value

of n less than the total machine parallelism of the nCUBE/2 so that the e�ects of the

fully-distributed inner loop and partially-distributed inner loop distribution schemes can be

observed. The results in Table 4.1 con�rm the following assumptions about these nested

task distribution schemes:

� When the outer loop is su�ciently large to cover the available machine parallelism,

the inner loop should be run sequentially to minimize the overhead for parallelism,

since more parallelism is not needed.

� When the machine parallelism exceeds the outer loop parallelism, both the Fully-

Distributed and the Partially-Distributed inner loop distribution techniques are ef-

fective at utilizing the excess machine parallelism, and the latter method is more

e�cient than the former method since the overhead of distribution and reduction

have been minimized for the amount of parallelism needed to cover the available

machine parallelism.

� For large numbers of processors (e.g., 512), the overhead for distributing the inner

loop of this program defeats the purpose of utilizing the excess machine parallelism,

and the Sequential inner loop distribution mechanism provides the best performance,

even though many of the processors are not utilized.

� For this program, the inner loop body performs few computations so, as we increase

the number of processors, the increase in communication time dwarfs the computa-

tion time. Thus this program, with these inputs, should not be executed on more

than 128 processors, which provides the highest performance in terms of execution

time (3.5128 s) using the Partially-Distributed inner loop distribution scheme.
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Method Size Time(s) Size Time(s)

Fixed 1 32768 16.5964 33280 16.9382

Fixed 2048 32768 86.4301 33280 92.7254

Fixed 4096 32768 1.0007 33280 16.7632

Fixed 8192 32768 138.8981 33280 115.0115

Var No Opt 32768 1.1426 33280 1.1744

Var Opt 32768 0.1709 33280 0.1699

Table 7.4: Performance of �xed vs. variable blocksize for SOR, 8 PEs

7.2 Address Translation: Fixed Versus Variable Blocksize

To assess the relative performance of the �xed-blocksize address translation scheme

outlined in Section 5.4 and the e�ectiveness of our variable-blocksize address translation

scheme with the local base optimization, we study the SOR program running on an eight

processor nCUBE/2. The results of our comparison are displayed in Table 7.4, where

four cases of the �xed mapping scheme are examined: blocksize = 1, blocksize = 2048,

blocksize = 4096, and blocksize = 8192. We also compare the performance of the unopti-

mized variable-blocksize translation scheme and the optimized variable-blocksize transla-

tion scheme, both of which employ a blocksize of n=p.

The outer loop of SOR runs sequentially, whereas the inner loop is distributed over

the eight processors in equal sized (n=p) loop slices. When combined with an array of size

32768, a blocksize of 4096 elements provides an ideal distribution, which is re
ected in the

�xed blocksize of 4096. The �xed blocksize of 8192 elements results in the array occupying

only half of the physical memories, resulting in \hot-spot" message tra�c to those nodes

which possess a portion of the array. Additionally, it creates a mismatch between loop

and data distribution. Likewise, the �xed blocksize of 2048 elements creates a mismatch

between the loop and data structures, though the smaller blocksize helps to provide a more

uniform distribution that reduces the hot-spot message tra�c pattern. The interleaved

data distribution (blocksize = 1) equally distributes the data and message tra�c, though

again running out of alignment with the loop.

When using an array of size 33280 elements, all �xed-blocksize distribution schemes

run out-of-alignment with the loop iteration space, resulting in a drastic loss in perfor-

mance for the previously optimal �xed blocksize of 4096 elements.

The variable-blocksize address translation scheme, represented in the lower portion of

Table 7.4, employs a blocksize of n=p elements which, for this program, always coincides

with the loop distribution blocksize. The result is that the variable-blocksize address

translation scheme always runs in alignment with the loop slices, thereby minimizing the

number of remote references, even when the array size is not a multiple of the number of

processors.

As can be seen from Table 7.4, the local address optimization described in Section 5.5

has a considerable impact on performance. We therefore, by default, employ the optimized

variable-blocksize address translation scheme for all of our sample programs.
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PEs Array Size Time (s) RE� (%)

1 65536 89.0208 100.0

2 65536 45.4485 97.9

4 65536 23.7399 93.7

8 65536 12.0825 92.1

4 262144 90.1753 100.0

8 262144 45.4274 99.3

16 262144 23.8274 94.6

32 262144 13:78014 81.8

16 1048576 90.5167 100.0

32 1048576 46:65364 97.0

64 1048576 25:78708 87.8

128 1048576 17:049516 66.4

Table 7.5: Performance of SOR, 100 iterations

7.3 One-Dimensional Arrays

In this section we present performance results for the one-dimensional array programs.

Table 7.5 gives performance of the SOR program using the processor con�guration group-

ing discussed earlier. In the last group of processors (16::128) we employ multi-level

distribution to reduce the overhead of distributing the large 
at loop.

Table 7.6 gives the performance for Lawrence Livermore Loop #7, which creates an

array of n elements from an input array of n + 6 elements. The default blocksize of n=p

elements used by the block map distribution function creates a misalignment between

the input and output arrays, resulting in an excessive number of remote references. To

minimize the number of remote references, the two arrays are distributed using the same

blocksize, namely (n + 6)=p. However, the loop must now also be distributed using a

blocksize of (n+6)=p iterations per slice, which is accomplished by modifying the blocksize

control parameter of the loop. The result, where the performance is given in Table 7.6

under the Custom Blocking heading, is that the input and output arrays are properly

aligned both with each other and the loop space, resulting in a minimal number of remote

references. However, the loop iteration space is now unevenly distributed among the

processors, with the �rst p � 1 processors each receiving (n + 6)=p iterations and the

�nal processor receiving the remainder. For this program, the reduced number of remote

references outweighs the load imbalance.

Table 7.7 gives the performance for Lawrence Livermore Loop #1, which creates an

array of n elements from an input array of n+11 elements. As with Loop #7, we examine

the performance of both the default and custom blocking schemes. For this program, the

bene�t of reducing the number of remote references does not cover the cost of the load

imbalance, causing the Custom Blocking method to degrade the overall performance of

the program.

Table 7.8 gives the performance of the parallel pre�x program, and Table 7.9 gives

the performance of the FFT program. Both of these programs have access patterns that

vary for each iteration of the algorithm, causing a very large number of remote references,

regardless of the original array distribution. For example, in the parallel pre�x algorithm,
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Default Blocking Custom Blocking

PEs Array Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 65536 74.9312 100.0 74.9313 100.0 1.00

2 65536 40.6622 92.1 38.5077 97.3 1.06

4 65536 23.9994 78.1 20.0551 93.4 1.20

8 65536 13.3095 70.4 10.7879 86.8 1.23

4 262144 79.7722 100.0 76.2464 100.0 1.05

8 262144 41.3235 96.5 38.8856 98.0 1.06

16 262144 27.0599 73.7 20.2864 94.0 1.33

32 262144 23.7752 41.9 11.1579 85.4 2.13

16 1048576 83.0454 100.0 76.4765 100.0 1.09

32 1048576 53.0769 78.2 39.2500 97.4 1.35

64 1048576 46.5863 44.6 21.1387 90.5 2.20

128 1048576 64.9865 16.0 13.1271 72.9 4.95

Table 7.6: Performance of Livermore loop #7, 50 iterations

Default Blocking Custom Blocking

PEs Array Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 65536 32.2601 100.0 32.2602 100.0 1.00

2 65536 16.6137 97.1 16.6764 96.7 1.00

4 65536 8.8835 90.1 8.9769 89.8 0.99

8 65536 5.6399 71.5 6.0811 66.3 0.93

4 262144 33.0699 100.0 33.1572 100.0 1.00

8 262144 17.3766 95.2 17.1698 96.6 1.00

16 262144 9.3532 88.4 9.5200 87.1 0.99

32 262144 7.5177 55.0 9.0400 45.8 0.83

16 1048576 33.5528 100.0 33.5487 100.0 1.00

32 1048576 20.4575 82.0 21.0452 79.7 0.97

64 1048576 15.9578 52.6 18.2375 46.0 0.87

128 1048576 20.4108 20.5 25.1038 16.7 0.81

Table 7.7: Performance of Livermore loop #1, 50 iterations
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PEs Array Size Time (s) RE� (%)

1 65536 10.9807 100.0

2 65536 65.3893 8.3

4 65536 54.7874 4.9

8 65536 36.8320 3.7

4 262144 220.2234 100.0

8 262144 147.3423 74.7

16 262144 92.3348 59.6

32 262144 55.9987 49.1

16 1048576 369.9710 100.0

32 1048576 222.2807 83.2

64 1048576 130.6187 70.8

128 1048576 76.3341 60.6

Table 7.8: Performance of parallel pre�x

the computation of Ai requires the values from Ai and Ai+d in the previous iteration,

where d is the \distance" between the references, and increases from 1 by a factor of two

for each iteration. Therefore, when the distance is greater than the blocksize, all Ai+d

references will be remote. In Chapter 8 we discuss future work that would enable us to

re-map the array once the distance exceeds the blocksize, e�ectively resetting the distance

to 1. The FFT program performs particularly poorly due, in part, to the large number

of remote references caused by the \butter
y" access pattern (similar to parallel pre�x),

but also because the Sisal compiler is unable to re-use the resulting array at each iteration

of the butter
y. The result is that, for each iteration, the old array is deallocated (when

the reference count reaches zero) and a new array is allocated. This causes an excessive

amount of remote references used in broadcasting information about the old and new

VISA data structure descriptors.

Both programs exhibit very little speedup, due to the very low computation to com-

munication ratio. If we examine the total remote reference count for parallel pre�x in

the �rst processor group [1::8], we see that there are 0 remote references for 1 processor,

65535 remote references for 2 processors, 130978 remote references for 4 processors, and

196601 remote references for 8 processors. The remote references grow as the number of

processors increases, but the total amount of computation remains the same. Given that

a remote reference is about 80 times as expensive as either a local reference of a local

computation, it is easy to see how the computation to communication ratio drops for this

program. The result is that parallelism is not very e�ective for these two programs, and

that parallel execution is only desirable for space considerations.

7.4 Explicit Versus Implicit Programming Styles

As was stated in Chapter 2, a parallel program executing on a distributed memory

multiprocessor must address two issues, either explicitly or implicitly:

1. Task management. Parallel execution is achieved by dividing the portions of code

which may be executed in parallel into parallel tasks, distributing the tasks among
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PEs Array Size Time (s) RE� (%)

1 4096 8.0910 100.0

2 4096 39.1992 10.3

4 4096 36.4452 5.6

8 4096 27.9294 3.6

4 8192 85.4928 100.0

8 8192 81.5629 52.4

16 8192 77.8649 27.4

32 8192 72.6381 14.7

16 16384 190.0012 100.0

32 16384 177.2432 53.6

64 16384 168.7034 28.2

128 16384 162.1386 14.6

Table 7.9: Performance of FFT
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Figure 7.2: Parallel programming style combinations

the participating nodes for parallel execution, and synchronizing their results so that

the computation remains determinate.

2. Memory management. Global data structures need to be distributed among the

participating nodes in such a way as to minimize the number of remote references

generated by the execution of the parallel tasks. Once a distribution is agreed upon,

the program must identify those references that fall outside of the local distribution

(i.e. remote), and communicate the request to the node which contains the value.

Given these two orthogonal programming issues, either of which may be handled

explicitly or implicitly, there are four possible parallel programming style combinations,

as depicted in Figure 7.2:

1. Explicit task management using parallel C and explicit memory management using

message passing primitives. Similar to assembly language, this style represents the

lowest level of abstraction, but the possibility for the highest level of performance.
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2. Explicit task management using parallel C and implicit memory management pro-

vided by the VISA runtime system. This style alleviates the programmer from the

details of a distributed memory system and explicit message passing.

3. Implicit task management using Sisal and explicit memory management using mes-

sage passing primitives. This represents a machine-dependent Sisal compiler that

has been given the ability to generate explicit distributed memory code, much like

the distributed memory Fortran compilers [HKT92, ZBG86]. However, such a mod-

i�cation to the compiler has not been undertaken, and thus we cannot expand on

this style in our analysis.

4. Implicit task management using Sisal and implicit memory management provided

by the VISA runtime system. This represents the opposite end of the programming

e�ort spectrum from explicit parallel C with message passing.

To measure the relative merits of each style, in terms of programming e�ort and

execution speed, we encode two applications in the three programming styles (1, 2, and 4)

speci�ed above. The two codes we selected, SOR and Livermore Loop #7, are designed to

highlight the e�ectiveness of either task or memory management techniques. With very

little task management required, Loop #7 highlights the di�erences between the implicit

and explicit memory management styles. The iteration loop in SOR provides a method of

controlling the amount synchronization required, thus highlighting the di�erences between

implicit and explicit task management.

Both of these programs were encoded using the three programming styles as follows:

� Sisal with VISA. Both codes were transformed into Sisal directly from their mathe-

matical descriptions. The code only speci�es what is to be computed, not how the

computations are to proceed. The result is a machine-independent speci�cation of

the problem that runs on any machine Sisal supports.

� Explicit parallel C with VISA. Moving into explicit task management, the codes have

to specify how the parallel loop is to divided among the workers, and how explicit

synchronization is to be performed. Memory management is handled by the VISA

system, however, for the Livermore Loop #7 code, special registers were employed

to cache the values of the B array so that multiple remote references to retrieve the

same value were eliminated.

� Explicit parallel C with message passing. Moving away from the VISA system, the

explicit task management code is augmented with explicit message passing designed

to optimize the number of remote references required and perform all remote refer-

ences before the computation loop is initiated (pre-fetching). Also, the communica-

tion model is changed from an interrupt-driven request/reply model used in VISA

to a synchronous read/write model so that the overhead of the interrupt handler

can be avoided. This allows the computation (inner) loop to run completely without

remote references. Special bu�ers are used to hold the pre-fetched values, and syn-

chronous communication phases are necessary to avoid deadlock. The distribution

of data among the processors is also explicitly stated, and altering this distribution

would require re-coding both the explicit communication and computation phases.
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LLNL Loop #7 SOR

Measure SISAL C+VISA C+MP SISAL C+VISA C+MP

Lines of code 25 163 338 24 184 459

Time to encode (hrs) 0.25 2.5 9.5 0.25 3.0 11.0

Table 7.10: Comparison of programming e�ort, in both time and space

SISAL C+VISA C+MP

PEs Array Size Time (s) Time (s) Sp1 Time (s) Sp2

1 65536 1.8002 1.3232 1.36 0.7462 1.77

2 131072 1.8699 1.3868 1.35 0.7479 1.85

4 262144 1.9307 1.3983 1.38 0.7493 1.86

8 524288 1.9322 1.3922 1.39 0.7518 1.85

16 1048576 2.0143 1.3959 1.44 0.7569 1.84

32 2097152 2.2006 1.4029 1.57 0.7673 1.83

64 4194304 2.5794 1.4173 1.81 0.7882 1.80

Ave. 1.47 1.83

Table 7.11: Performance of Livermore loop #7, various programming styles

7.4.1 Results and Analysis

We compare the relative merits of each programming style using two metrics: pro-

gramming e�ort and performance. Table 7.10 displays the programming e�ort in terms

of lines of code that the user is responsible for writing, and approximate time it took us

to code and debug each of the programs, where, as in all of our tables, SISAL represents

the Sisal codes, C+VISA represents the explicit parallel C with VISA codes, and C+MP

represents the explicit parallel C with message passing codes. The claim that implicit

parallel languages ease the task of programming distributed memory multiprocessors is

clearly supported by these numbers. We acknowledge that these measurements are sub-

jective as to the overall programming e�ort, however, they do paint a realistic picture of

the relative di�culties of these programming styles. As we move from Sisal to explicit C

with VISA, and to explicit C with message passing, the code becomes increasingly more

complex, requires increasingly more lines of code, and becomes more machine-dependent.

The question, then, is whether increased performance justi�es the additional programming

e�ort.

Table 7.11 gives the execution results for Loop #7, where a constant blocksize of

65536 (2
16
) double-precision elements is used and Array Size represents the total size of

the A and B arrays, Sp1 represents the speedup in going from Sisal to C with VISA

(TSISAL=TC+V ISA), and Sp2 represents the speedup in going from C with VISA to C

with message passing (TC+V ISA=TC+MP ). In order to highlight the performance gain

achieved by explicit memory management, the blocksize, or number of array elements per

processor, was kept constant at 65,536 (2
16
) double-precision elements. The data reveals

that an average speedup of 1.47 is achieved when going from Sisal to explicit C with VISA,
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SISAL C+VISA C+MP

PEs Blocksize Ratio Time (s) Time (s) Sp1 Time (s) Sp2

1 65536 .002 114.7980 119.6738 0.96 51.9780 2.30

2 32768 .004 58.2668 60.8672 0.96 41.1032 1.48

4 16384 .008 30.2806 30.4173 0.99 21.0470 1.46

8 8192 .016 15.5127 15.4519 1.00 10.6547 1.45

16 4096 .032 9.1281 8.1962 1.11 5.5524 1.48

32 2048 .063 7.2312 5.0998 1.42 3.1722 1.61

64 1024 .125 8.8509 4.4798 1.97 2.6409 1.69

Ave. 1.20 1.64

Table 7.12: Performance of SOR, various programming styles

which is due to the memory caching optimization rather than the explicit control of tasks.

Additionally, an average speedup of 1.83 is achieved when moving from explicit C with

VISA to explicit C with message passing, demonstrating the overhead of the VISA system

and the e�ectiveness of the pre-fetching optimization. In terms of space requirements,

Sisal uses the minimum: two arrays of size n, one for A and one for B. Explicit C with

VISA allocates an additional 7 double-precision locations per array to cache the values

of Bi through Bi+6 so that they need only be retrieved once. Explicit C with message

passing also allocates an additional block of 7 elements to store the values of B that reside

on the neighboring node.

Table 7.12 gives the execution results for SOR, where a constant array size of 65536

(2
16
) double-precision elements and 128 iterations is used. Again, the array size is held

constant, causing the blocksize to decrease and the ratio of iterations to blocksize to in-

crease as the number of processors increases. This ratio represents the increasing emphasis

being placed on task management. In moving from Sisal to explicit C with VISA, there

is an average speedup of 1.20, which starts as a performance decrease and gains as the

ratio of iterations to blocksize increases, placing greater emphasis of task management

on the total execution time. This initial loss in performance is due to the ability of the

Sisal compiler to generate code that is highly optimized, which sometimes outperforms

normal hand-coded C. However, this small gain is quickly lost as the complex Sisal task

management system is outperformed by the hand-coded C task management. In moving

from explicit C with VISA to explicit C with message passing, there is an average speedup

of 1.64, again representing the overhead of VISA and the e�ectiveness of pre-fetching all

remote references. The low speedup of the explicit C with message passing in going from

1 processor to 2 processors shows the enormous overhead of the synchronization that this

problem creates. This drop in speedup is not visible in the other two approaches due to

the overhead of the VISA system. In terms of space requirements, explicit C with VISA

uses the minimal two arrays of size n, one for the previous iteration and one for the current

iteration, and pointers are swapped at the end of each iteration. The Sisal compiler also

recognizes this optimization, but generates the two swap arrays only after generating an

array to hold the initial values, resulting in a space overhead of n elements. The explicit

C with message passing uses only the two necessary arrays, but allocates an additional

two elements per processor to hold the pre-fetched remote values from neighboring nodes.



88

7.4.2 Summary of Data

Sisal with VISA provides implicit management of both tasks and data, and o�ers rea-

sonable performance while alleviating the programmer from the implementation details of

an architecture, resulting in relatively e�cient machine-independent code that is portable

among a wide range of architectures [Can92]. Furthermore, since the current Sisal com-

piler is unaware of distributed memory and costs associated with accessing remote data,

we expect a performance gain when such information is exploited by the compiler [WF92].

Explicit parallel C with VISA o�ers the ability to increase the performance of an

application, but at the cost of increased code size, programming e�ort, and machine-

dependence. For our simple programs, an average speedup of 1.34 over Sisal is achieved,

but at the cost of increasing the code size by an average factor of 7, and increasing the

time required to encode and debug the programs by an average factor of 11.

Explicit parallel C with explicit message passing o�ers the ability to exploit the

problem and machine details to obtain the highest performance for a particular machine.

For our programs, average speedups of 1.74 over C with VISA, and 2.34 over Sisal are

achieved. Once again, this increase in performance is obtained at the cost of increasing

program sizes by an average factor of 2 over explicit C with VISA, and by a an average

factor of 15 over Sisal, while increasing the time required to encode and debug the programs

by an average factor of 4 over explicit C with VISA, and by an average factor of 40 over

Sisal.

The results show that although implicit parallel programming can o�er reasonable

performance, it is possible to increase the performance by taking explicit control over task

management or data management. It is the decision of the applications programmer as

to whether the increase in performance warrants the increase in programming e�ort when

moving from implicit to explicit programming styles, but the option should nonetheless

be available.

7.5 Two-Dimensional Arrays

To evaluate the e�ectiveness of our runtime system in aligning data and loops, we

shall examine the distribution and performance of the Laplace program. Laplace employs

a �ve-point stencil computation, which implies that the computation of all boundary

elements for a give distribution will require remote references. Thus our �rst intuition

is to minimize the number of elements on the distribution boundaries. We examine two

matrix mapping functions to see how e�ective they are at minimizing remote references.

For our comparisons, let us assume that the matrix size is 256� 256(n = 256) and we are

using 16 processors (p = 16).

� Thematrix row mapmapping function allocates b contiguous rows to each processor,

where b = n=p. This mapping scheme eliminates all of the interior remote references,

leaving only those on every b-th row boundary. Thus we have a total of (p�2)2(n�
2)+2(n�2) remote references , which is 7,620 for our example of a 256�256 matrix.

� In thematrix block map mapping function the p processors are arranged in a
p
p�

p
p

grid, each owning a (n=
p
p) � (n=

p
p) block of the matrix. In the example case

this would lead to a 4x4 grid with 128x128 elements per processor, with 4 corner

processors performing 254 remote references each, 8 side processors performing 382
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matrix row map matrix block map

PEs Matrix Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 256x256 17.1284 100.0 18.6020 100.0 0.92

2 256x256 27.8498 30.8 34.3491 27.1 0.81

4 256x256 19.4244 22.0 24.4763 19.0 0.79

8 256x256 20.7248 10.3 22.7965 10.2 0.90

4 512x512 52.2188 100.0 53.0218 100.0 0.98

8 512x512 47.8333 54.5 51.3777 51.6 0.93

16 512x512 58.5527 22.3 63.2369 21.0 0.92

32 512x512 89.9674 7.3 97.4665 6.8 0.92

16 1024x1024 129.7875 100.0 134.5676 100.0 0.96

32 1024x1024 185.1608 35.0 199.6552 33.7 0.93

64 1024x1024 318.1579 10.2 346.8237 9.7 0.92

128 1024x1024 529.3233 3.1 646.9596 2.6 0.82

Table 7.13: Performance of 2D Laplace, row versus block map, 10 iteration

remote references each, and 4 interior processors performing 512 remote references

each, producing total of 6,120 remote references.

The results of running Laplace with the two matrix mapping functions are given in

Table 7.13. These results are clearly disappointing. The poor performance is caused by

the need for replicating the administrative data structures of the two dimensional arrays,

creating 3(3n+ 3) Sisal data structures and 3(3n+ 3) VISA data structures (range map

entries), for a total of 3(6n+ 6) administrative data structures, 3(5n+ 5) of which must

be replicated (see Section 6.8.3). In a one PE machine there is no broadcast, hence the

much better sequential performance. Dealing with N-dimensional arrays in this fashion

works for shared memory machines, but is clearly unacceptable in a distributed memory

machine. The correct way to solve this problem is to have true N-dimensional arrays in

Sisal, resulting in one descriptor for the whole structure. Sisal 2.0 [BCFO91] de�nes true

N-dimensional arrays and gives a method of distributing regions of these arrays. A quick

�x to this problem given the current version of Sisal is to represent the matrix by a one

dimensional structure and rewrite the inner loop of Laplace as follows:

M := for k in 1,n*n

i := (k-1)/n + 1; j := mod(k,n);

nM := if i=1|i=n|j=1|j=0

then old M[k]

else old M[k] / 2.0 + (old M[k-n] + old M[k+n] +

old M[k-1] + old M[k+1])/8.0

end if

returns array of nM

end for

Table 7.14 presents the results of the improved Laplace program, using a one di-

mensional array and a block mapping function that corresponds to the matrix row map
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Sisal 2D Arrays True 2D Arrays

PEs Matrix Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 256x256 17.1284 100.0 16.6974 100.0 1.03

2 256x256 27.8498 30.8 18.5326 45.0 1.50

4 256x256 19.4244 22.0 12.4936 33.4 1.55

8 256x256 20.7248 10.3 8.7825 23.8 2.36

4 512x512 52.2188 100.0 41.3844 100.0 1.26

8 512x512 47.8333 54.5 25.4780 81.2 1.88

16 512x512 58.5527 22.3 17.4767 59.2 3.35

32 512x512 89.9674 7.3 14.5955 35.4 6.16

16 1024x1024 129.7875 100.0 50.6113 100.0 2.56

32 1024x1024 185.1608 35.0 36.0326 70.2 5.14

64 1024x1024 318.1579 10.2 29.1644 43.4 10.91

128 1024x1024 529.3233 3.1 26.8367 23.6 19.73

Table 7.14: Performance of improved Laplace (matrix row map)

function. The results are better, albeit not impressive yet. They can be further improved

by employing multithreading (see Section 7.6), and even more so by having the compiler

generate block moves allowing a whole row to be communicated between nodes. This

is a case where making the compiler aware of the distributed memory architecture, and

performing the appropriate analysis and optimization, will provide results superior to the

general runtime approach.

Table 7.15 gives the performance of matrix multiply and Table 7.16 gives the per-

formance of Cholesky factorization, both of which employ Sisal two-dimensional data

structures. Based on the results obtained for Laplace, it is not surprising to see the poor

performance of these other two-dimensional array programs. As with parallel pre�x and

FFT, the two-dimensional problems all su�er from excessively low computation to com-

munication ratios. Matrix multiply allocates three two-dimensional data structures, one

for each input matrix and one for the computed matrix, all of which are allocated using

the matrix row map mapping function, since using the matrix block map function would

require re-writing the matrix multiply algorithm to perform sub-block multiplications. We

did consider explicitly transposing the B matrix so that both A and B would be accessed

in row-major fashion, which coincides with the distribution. However, this strategy does

not alter the number of B elements held locally by any one processor, but alters the way

in which the elements are accessed. As a result, the number of remote references dur-

ing the matrix multiply is the same whether the B matrix is transposed or not, though

actually transposing the matrix incurs a substantial number of remote references. There-

fore, it is better to leave the B matrix in its original form and access it in column-major

fashion. Though matrix multiply does observe some degree of speedup, the overall poor

performance is due to the overheads in handling Sisal two-dimensional arrays, which is

exacerbated in the Cholesky program.

Table 7.16 gives the dismal performance of the Cholesky program, which employs tri-

angular arrays that are implemented as two-dimensional data structures in Sisal. There-

fore, although the actual amount of data space occupied by the triangular arrays is less
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PEs Matrix Size Time (s) RE� (%)

1 64x64 2.9211 100.0

2 64x64 80.3168 1.8

4 64x64 72.4649 1.0

8 64x64 46.4425 1.0

4 128x128 581.9276 100.0

8 128x128 345.1970 84.3

16 128x128 231.3354 62.9

32 128x128 170.6795 42.6

16 256x256 1625.3946 100.0

32 256x256 1051.7490 77.3

64 256x256 837.5011 48.5

128 256x256 1248.3309 16.3

Table 7.15: Performance of matrix multiply

PEs Matrix Size Time (s) RE� (%)

1 32x32 15.4610 100.0

2 32x32 32.5118 23.8

4 32x32 33.4192 11.6

8 32x32 36.5835 5.3

4 64x64 216.2966 100.0

8 64x64 221.6448 48.8

16 64x64 229.6827 23.5

32 64x64 271.6236 10.0

Table 7.16: Performance of Cholesky Factorization

than for a full two-dimensional array, the number of data structures required to represent

the array (6n+6) remains the same. Additionally, the Cholesky program allocates a new

matrix for each iteration of the algorithm, where an iteration updates a column in the

matrix. Therefore, in the 32�32 problem, there are 2 initial matrices created plus 32 sub-

sequent matrices. Since the number of control structures for all 34 matrices would exceed

the capacity of the VISA system, old matrices must also be freed at each iteration, which

requires a substantial amount of time given that the range map table is represented by an

array and must remain in sorted order to facilitate the binary search lookup. Therefore,

while deallocating an array and removing the 3n+3 VISA data structures from the range

map table, new allocation request messages pile up in the input bu�er until the bu�er �lls

and a message is dropped by the network, resulting in a system failure. This is the case

for the largest processor con�guration attempting to work on a problem size of 128� 128,

which is why the table only contains numbers for the �rst two groupings.

Given the performance of Laplace, matrix multiply, and Cholesky using Sisal two-

dimensional arrays, and the improvement in Laplace when going to a true rectangular
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No Multithreading Multithreading

K Time (s) MT Time (s) Sp

2 319.7981 16 261.1423 1.23

4 163.2623 16 132.1156 1.24

8 84.3097 16 69.4269 1.21

16 44.8897 16 38.6020 1.16

32 24.6900 16 22.7694 1.08

64 15.5231 16 14.5893 1.07

128 11.0904 8 10.4830 1.06

256 8.7077 8 8.2148 1.06

512 7.9346 4 7.4274 1.06

1024 6.9820 4 6.9516 1.01

2048 6.6903 2 6.6887 1.00

4096 6.5692 2 6.5608 1.00

8192 6.5136 2 6.5265 1.00

Table 7.17: Performance of synthetic program, 8 PEs, 65536 elements, 50 iterations

array data structure, it is evident that a distributed memory Sisal compiler cannot continue

to deal with multi-dimensional data structures in the current manner.

7.6 Multithreading

In order to evaluate the multithreading system and the analysis given in Section 4.5.2,

we begin our study with a synthetic program in which we can vary the number of remote

references. The program successively transforms an array, similar to the SOR program,

and performs a remote access for every Kth array element to be computed.

Table 7.17 gives the results of this program for 50 iterations, using an array size of

65536 elements, and running on eight processors. MT gives the optimal number of threads

per processor, and Sp gives the speedup due to multithreading. The arrays are divided in

8 parts (1 per node) of 8192 elements each. In the case of K=2, there are 4096 remote ref-

erences per processor per iteration. The result is that there is very little work surrounding

the remote references, and so 16 threads are necessary to avoid switching back to a thread

before the remote reference has been satis�ed. The gain per remote reference is therefore

the di�erence in the multithreading and non-multithreading times (319:7� 261:1 = 58:6s)

divided by the number of remote references (4096 per iteration � 50 iterations), which

is 58:6=(50 � 4096) = 286�s. It turns out that in the non-multithreading case, almost all

message interrupts to handle remote read requests occur while the processor is waiting for

its own remote reference. This is due in part to the highly regular access pattern that is

identical for all processors, which creates very synchronous message tra�c. Also, almost

all context switches are successful in the multithreading case. Therefore the actual gain

of 286�s coincides closely with the estimated gain (using Eq. 4.2) of 600� 350 = 250�s.

This behavior continues for values of K from 2 to 16, at which point the e�ects of latency

hiding are diminished by the overheads of multithreading. Finally, when the number of

remote references becomes very small (K=1024), the multithreading overheads govern the

behavior.
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No Multithreading Multithreading

PEs Array Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 65536 89.0208 100.0

2 65536 45.4485 97.9 45.9884 96.8 0.98

4 65536 23.7399 93.7 23.9641 92.9 0.99

8 65536 12.0825 92.1 12.1591 91.5 0.99

4 262144 90.1753 100.0 90.6536 100.0 0.99

8 262144 45.4274 99.3 45.5038 99.6 0.99

16 262144 23.8274 94.6 23.8850 94.9 1.00

32 262144 13.7801 81.8 13.8359 81.9 0.99

16 1048576 90.5167 100.0 90.5733 100.0 1.00

32 1048576 46.6536 97.0 46.6836 97.0 1.00

64 1048576 25.7870 87.8 25.7963 87.7 1.00

128 1048576 17.0495 66.4 17.0916 66.2 1.00

Table 7.18: Performance of SOR with multithreading, MT=2, 100 iterations

Remote References
Thread Division

Array

Node 4Node 3Node 2Node 1

Figure 7.3: Array distribution for SOR program

Table 7.18 provides performance data for SOR with multithreading, where the number

of threads is 2 for all cases, RE�% gives the relative e�ciency for the group, and Sp gives

the speedup caused by multithreading. Due to the locality of the data references in the

program and the e�ectiveness of the mapping function in exploiting this locality, Sisal

exhibits good relative speedups, leaving little room for improvement for multithreading.

In fact, locality works so well for this program, that there are simply not enough remote

references that result in successful switches to cover the costs of setting up multithreading

and fetching thread parameters.

Relating these results to our analytical model, the SOR program contains a sequential

outer loop that iterates over the array being smoothed, and a parallel inner loop in which

each array element is updated using values from the array in the previous iteration. Fig-

ure 7.3 shows the distribution of the array onto four nodes, and how these sub-arrays are

again divided over the two threads per node. The �rst node has zero successful switches as

its �rst thread, which has no remote references, executes to completion before the second

thread is started. Although the second thread contains a single remote reference, there

are no other threads to tolerate the latency of the reference. Therefore, multithreading

only infers extra costs (P=0, H=0 in Eq. 4.2). Internal nodes have two successful context

switches, which almost covers the costs of multithreading (P=2, H=2 in Eq. 4.2). The

last node has only one successful switch, and therefore does not gain from multithreading

either (P=2, H=1 in Eq. 4.2). Since barrier synchronization forces all nodes to wait for
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No Multithreading Multithreading

PEs Matrix Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 256x256 16.6974 100.0

2 256x256 18.5326 45.0 11.2740 74.1 1.65

4 256x256 12.4936 33.4 8.9311 46.7 1.39

8 256x256 8.7825 23.8 6.8160 30.6 1.27

4 512x512 41.3844 100.0 26.7381 100.0 1.54

8 512x512 25.4780 81.2 18.2013 73.5 1.39

16 512x512 17.4767 59.2 13.6886 48.8 1.27

32 512x512 14.5955 35.4 11.5710 28.9 1.26

16 1024x1024 50.6113 100.0 36.4239 100.0 1.39

32 1024x1024 36.0326 70.2 27.3604 66.6 1.31

64 1024x1024 29.1644 43.4 23.1235 39.4 1.26

128 1024x1024 26.8367 23.6 20.3319 22.4 1.32

Table 7.19: Performance of Laplace with multithreading, MT=16, 10 iterations

the slowest, this problem, as can be seen in both the cost analysis and the actual data,

does not bene�t from multithreading.

Table 7.19 gives the performance results for Laplace with multithreading, where the

number of threads is 16 for all multithreading cases, RE�% gives the relative e�ciency

within the group, and Sp gives the speedup due to multithreading. For this experiment,

we use the improved version of Laplace that utilizes a one-dimensional array rather than

the Sisal two-dimensional arrays. This is done so that the e�ects of multithreading can

be seen in the performance of the program. Going from no message passing (1 PE) to

message passing (2 PEs) slows the program down in the non-multithreading case, but

since the compute/communicate ratio of Laplace is high (the computation of O(n2) array

elements requires O(n) remote references), parallelizing this code pays o� and performance

is regained. At the same time, multithreading is e�ective for Laplace as there are enough

remote reference to cover the multithreading overheads, which gives rise to speedups of be-

tween 1.26 and 1.65. Clearly, multithreading is e�ective at tolerating the remote references

for this program.

Table 7.20 gives the performance of Livermore Loop #7 with multithreading and

Table 7.21 gives the performance of Livermore Loop #1 with multithreading, where the

number of threads is 2 for all cases (to minimize overhead), RE�% gives the relative

e�ciency within a group, and Sp gives the speedup due to multithreading. Both of these

programs exhibit a very high degree of locality, and the mapping functions are successful

in taking advantage of this locality, generating very few remote references. As a result,

neither of these applications are a�ected by multithreading. In fact, the slight gains or

losses seen in the tables are probably more attributable to noise than the actual e�ects of

multithreading.

Table 7.22 gives the performance of parallel pre�x with multithreading and Table 7.23

gives the performance of FFT with multithreading, where the number of threads is 16 for

all cases (to maximize hits), RE�% gives the relative e�ciency within a group, and Sp

gives the speedup due to multithreading. Both programs utilize one-dimensional arrays

whose access patterns vary with each iteration, so that many remote references are gen-
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No Multithreading Multithreading

PEs Array Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 65536 74.9313 100.0

2 65536 38.5077 97.3 38.5364 97.2 1.00

4 65536 20.0551 93.4 20.0642 93.4 1.00

8 65536 10.7879 86.8 10.8078 86.7 1.00

4 262144 76.2464 100.0 76.2555 100.0 1.00

8 262144 38.8856 98.0 38.9049 98.0 1.00

16 262144 20.2864 94.0 20.3012 93.9 1.00

32 262144 11.1579 85.4 11.1727 85.3 1.00

16 1048576 76.4765 100.0 76.4846 100.0 1.00

32 1048576 39.2500 97.4 39.2721 97.4 1.00

64 1048576 21.1387 90.5 21.1599 90.4 1.00

128 1048576 13.1271 72.9 13.1485 72.7 1.00

Table 7.20: Performance of Livermore loop #7 with multithreading, 50 iterations

No Multithreading Multithreading

PEs Array Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 65536 32.2601 100.0

2 65536 16.6137 97.1 16.6358 97.0 1.00

4 65536 8.8835 90.8 8.9120 90.5 1.00

8 65536 5.6399 71.5 5.1330 78.6 1.09

4 262144 33.0699 100.0 33.0953 100.0 1.00

8 262144 17.3766 95.2 17.3685 95.3 1.00

16 262144 9.3532 88.4 9.5229 86.9 0.98

32 262144 7.5177 55.0 7.3098 56.6 1.03

16 1048576 33.5528 100.0 33.7273 100.0 0.99

32 1048576 20.4575 82.0 19.5398 86.3 1.05

64 1048576 15.9578 52.6 15.5133 54.4 1.03

128 1048576 20.4108 20.5 20.0372 21.0 1.02

Table 7.21: Performance of Livermore loop #1 with multithreading, 50 iterations
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No Multithreading Multithreading

PEs Array Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 65536 10.9807 100.0

2 65536 65.3893 8.3 41.0189 13.1 1.59

4 65536 54.7874 4.9 40.2863 7.0 1.36

8 65536 36.8320 3.7 27.3209 4.9 1.35

4 262144 220.2234 100.0 162.1199 100.0 1.36

8 262144 147.3423 74.7 109.3570 74.1 1.35

16 262144 92.3348 59.6 68.9983 58.7 1.34

32 262144 55.9987 49.1 42.0135 48.2 1.33

16 1048576 369.9710 100.0 276.2995 100.0 1.34

32 1048576 222.2807 83.2 166.7407 82.9 1.33

64 1048576 130.6187 70.8 98.3616 70.2 1.33

128 1048576 76.3341 60.6 57.9285 59.6 1.32

Table 7.22: Performance of parallel pre�x with multithreading

No Multithreading Multithreading

PEs Array Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 4096 8.0910 100.0

2 4096 39.1992 10.3 33.1723 12.2 1.18

4 4096 36.4452 5.6 31.7575 6.4 1.15

8 4096 27.9294 3.6 23.8901 4.2 1.17

4 8192 85.4928 100.0 70.0730 100.0 1.22

8 8192 81.5629 52.4 67.7769 51.7 1.20

16 8192 77.8649 27.4 65.8737 26.6 1.18

32 8192 72.6381 14.7 63.2700 13.8 1.15

16 16384 190.0012 100.0 158.8733 100.0 1.20

32 16384 177.2432 53.6 149.3392 53.2 1.19

64 16384 168.7034 28.2 144.3667 27.5 1.17

128 16384 162.1386 14.6 137.5489 14.4 1.18

Table 7.23: Performance of FFT with multithreading
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No Multithreading Multithreading

PEs Matrix Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 64x64 2.9211 100.0

2 64x64 80.3168 1.8 63.2268 2.3 1.27

4 64x64 72.4649 1.0 69.7533 1.1 1.04

8 64x64 46.4425 1.0 45.7500 1.0 1.02

4 128x128 581.9276 100.0 454.9914 100.0 1.28

8 128x128 345.1970 84.3 328.6310 69.2 1.05

16 128x128 231.3354 62.9 226.9965 50.1 1.02

32 128x128 170.6795 42.6 166.4451 34.2 1.02

16 256x256 1625.3946 100.0 1430.3472 100.0 1.12

32 256x256 1051.7490 77.3 1009.6790 70.8 1.04

64 256x256 837.5011 48.5 829.1261 43.1 1.01

128 256x256 1248.3309 16.3 1242.8650 14.4 1.00

Table 7.24: Performance of matrix multiply with multithreading

No Multithreading Multithreading

PEs Matrix Size Time (s) RE� (%) Time (s) RE� (%) Sp

1 32x32 15.4610 100.0

2 32x32 32.5118 23.8 31.1058 24.9 1.05

4 32x32 33.4192 11.6 32.3402 12.0 1.03

8 32x32 36.5835 5.3 36.5824 5.3 1.00

4 64x64 216.2966 100.0 213.2748 100.0 1.01

8 64x64 221.6448 48.8 219.0985 48.7 1.01

16 64x64 229.6827 23.5 228.3755 23.3 1.00

32 64x64 271.6236 10.0 271.5913 9.8 1.00

Table 7.25: Performance of Cholesky, with multithreading

erated regardless of the original data distribution (i.e., poor locality). For parallel pre�x,

multithreading does a good job of tolerating the remote references, resulting in an average

speedup of 1.36 over the non-multithreading cases. The tendency for the speedup to de-

crease as the number of processors is increased is due to the increase in task management

overheads rather than a decrease in the multithreading e�ciency. Multi-level distribution

attempts to re-capture some of the lost performance, but cannot remove the decrease

altogether.

Table 7.24 gives the performance of matrix multiply with multithreading and Ta-

ble 7.25 gives the performance of Cholesky with multithreading, where the number of

threads is 16 for all cases (to maximize hits), RE�% gives the relative e�ciency within a

group, and Sp gives the speedup due to multithreading. Although the speedups due to

multithreading are negligible, it is not because the multithreading is ine�ective at tolerat-

ing the remote references, but that the overriding costs in these programs is in managing

the Sisal two-dimensional data structures. In other words, the e�ects of multithreading are
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dwarfed by the overheads of two-dimensional data structures. As seen with the Laplace

example, when these overheads are eliminated, the e�ects of multithreading are much

more visible.

The multithreading results lead to the following conclusions:

1. When the number of remote references is very low, due to the ability of the mapping

functions and loop distribution techniques to exploit locality, the percentage of total

time due to remote references is very low, and so multithreading will have little

impact one way or another. When the number of remote references is extremely

small, the costs of multithreading are typically not re-captured.

2. When there are a su�cient number of remote references, which account for a sub-

stantial portion of the total execution time, multithreading is e�ective at tolerating

much of the latency resulting from these remote references, resulting in a speedup

over the non-multithreading case averaging between 1.20 and 1.40.

3. When the total execution time is dominated by the overhead of administering Sisal

two-dimensional data structures, the e�ects of multithreading are inconsequential.

The much larger problem is to e�ciently handle multi-dimensional data structures.



Chapter 8

CONCLUSIONS AND FUTURE DIRECTIONS

The future's so bright, I gotta wear shades!

{ Timbuckthree

We have presented the design and implementation of a distributed runtime system

which provides support for task management and memory management, such as parallel

task distribution, data distribution across a single addressing space, and multithreading.

Using this system as a basis for supporting Sisal on a distributed memory multiprocessor,

we have evaluated the various designs in our system in general, and the ability of a runtime

system to avoid and tolerate remote memory references in particular.

8.1 Summary of Results

We found that the runtime system can be e�ective in controlling the distribution

of tasks among a wide variety of processor con�gurations. In particular a multi-level

distribution scheme is e�ective at reducing the overheads associated with distributing

work to a large number of processors. Also, in the case of nested loops, adapting the

amount of parallelism in loops to the parallelism in the machine is necessary to control

the tradeo� of parallelism versus overhead.

We found that providing a single addressing space to the compiler can result in large

overheads for address translation, but that certain optimizations can minimize this over-

head, particularly for local references where the overhead is most visible. We compared

our variable-blocksize address translation scheme, which allows us to align the data dis-

tribution with the task distribution so that unnecessary remote references are minimized,

to a �xed-blocksize address translation scheme. Although the �xed-blocksize translation

scheme eliminates the need for fetching a data structure descriptor, which is necessary in

the variable-blocksize translation scheme, it is di�cult to keep the data aligned with the

tasks, resulting in excessive remote references. The variable-blocksize address translation

scheme typically keeps the data in alignment with the tasks, resulting in performance com-

parable to the optimal �xed blocksize. Furthermore, optimizing the address translation

process to account for local references results in a substantial improvement over both the

�xed-blocksize and unoptimized variable-blocksize address translation schemes.

We found that, through a combination of aligning tasks with data, parallelizing the

distribution of tasks to a large number of processors, and tolerating the unavoidable remote

references using multithreading, we are able to e�ciently execute a variety of programs

that use one-dimensional data structures exclusively.

We found that, in comparing explicit programming styles to implicit programming

styles for distributed memory multiprocessors, there is a tradeo� of performance for pro-

gramming e�ort. Speci�cally, for our small examples, pure implicit programming o�ers
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reasonable performance while alleviating the programmer from the implementation details

of the target architecture. A hybrid of explicit and implicit programming can be used to

increase performance by an average speedup of 1.34 over the purely implicit style, but only

at a cost of increasing the lines of code by an average factor of seven and increasing the

time required to encode and debug the problem by an average factor of 11. Finally, using

a purely explicit style, we can increase performance to obtain an average speedup of 1.74

over the hybrid style and 2.34 over the purely implicit style, but at a cost of increasing

the program size by a factor of two over the hybrid style and a factor of 15 over the purely

implicit style and increasing the programming time by an average factor of four over the

hybrid style and a factor of 40 over the purely implicit style. Therefore, although it is

possible to increase the performance of an application by lowering the programming ab-

straction, this increase in performance often comes at a substantial cost to programming

e�ort. Also, the performance of the implicit style can be improved through multithreading

and increased compiler support.

We found that two-dimensional arrays in Sisal generate an excessive number of de-

scriptor data structures, and the management of all these structures at runtime is pro-

hibitive. In fact, the overhead caused by these two-dimensional data structures dominates

the execution time of our two-dimensional programs to the extent that the e�ects of data

distribution and multithreading are not visible. However, if true rectangular arrays were

supported, the overhead of two-dimensional data structures is greatly reduced, and the

e�ects of multithreading become visible.

We found that multithreading can be e�ective at tolerating the latency due to remote

references when the number of remote references is large enough to cover the cost of

multithreading and the e�ect of the remote references on the overall execution time of

the program is noticeable. For this case, multithreading yields a speedup over the non-

multithreading case averaging between 1.2 and 1.4. If either the remote references are

too few to have an impact on the performance of the program, or other factors, such as

two-dimensional data structure manipulation, hide the e�ects of the remote references,

then multithreading is ine�ective.

8.2 Future Work

In this section we examine the issues that need to be addressed in providing software

support for latency avoidance and latency tolerance.

� Compiler support. Although we have created a robust runtime system that is

capable of executing code produced by the shared memory Sisal compiler on a dis-

tributed memory multiprocessor, it is often the case that when the compiler ignores

the presence of a distributed memory hierarchy, the code it generates will result in

dismal performance. Below we present a list of items that need to be addressed by a

compiler generating code for a distributed memory multiprocessor with underlying

runtime support such as provided by our system.

{ Support for the runtime system primitives. Since the current Sisal compiler

does not know of the VISA runtime system, all of the VISA primitives (listed in

Appendix A) must be inserted by hand. While this is an algorithmic procedure

that would not be di�cult for a code generator to perform, it has nonetheless

precluded us from studying large problems, due to the time required to insert

the primitives by hand.
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{ Support for true rectangular arrays. We have shown that, for a distributed

memory multiprocessor, implementing Sisal two-dimensional arrays in the cur-

rent manner is prohibitive, and that rectangular arrays can improve the per-

formance greatly. Therefore, before any large problems can be e�ciently sup-

ported, true rectangular arrays must be supported at the compiler level.

{ Support for function call parallelism. Though the Sisal language exposes func-

tion level parallelism, the current Sisal compiler does not exploit this level of

parallelism. For example, a recursive version of FFT would expose a great deal

of function level parallelism, but we are forced to use an iterative version of

FFT to expand the parallel loops.

{ Support for the multithreading paradigm. The Sisal compiler currently gener-

ates code for a very limited parallel tasking system, though we have been able

to add considerable 
exibility through runtime support. The multithreading

system currently uses this same tasking paradigm, simply dividing each given

slice into a number of threads. Since the current compiler generates slice code in

such a way that the input parameters are fetched after the slice has begun, each

thread on the same processor must fetch these input parameters independently.

Clearly this creates an unnecessary overhead for the multithreading system that

could be eliminated if the compiler generated slice code in two sections, one

for gathering input parameters and another for performing the actual compu-

tations. In this manner, the threads could divide after the common parameters

have been fetched.

{ Improved analysis. We have provided runtime support for a number of pa-

rameters in a distributed memory implementation, although the intelligence

to determine the best con�guration of the various options has been left to

the programmer to determine using runtime switches. The goal of raising the

programmer from this level of detail must be addressed by the compiler in

performing analysis that will attempt to compute the optimal settings for the

various capabilities. Current research in the area of compiler analysis for dis-

tributed memory architectures is abundant, including Sisal-based analysis for

data distribution [OH92] and task partitioning [WF92], although neither of

these analyses have been actually incorporated into the current Sisal compiler.

Also, for regular problems whose access pattern can be determined at com-

pile time, the compiler should be able to help the VISA system by optimizing

all local references so that address translation can be avoided, and possibly

even setting up a synchronous communication model to fetch known remote

references.

� Support for vectorized messages and pre-fetching. Perhaps one of the largest

costs in the VISA system is the time required for a remote reference, due mainly to

the address translation process for both the requesting and replying processes, and

the message startup time. A signi�cant improvement can be made by amortizing the

translation and startup costs over a large number of remote references that are to

be obtained from the same processor, such as an entire matrix row. By supporting

vectorized messages and the ability to control pre-fetching these blocks of data, we

hope to drastically improve the performance of programs such as matrix multiply.
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� Support for re-mapping. For programs such as parallel pre�x and FFT, where

the access pattern changes over some iteration space in the program, it may be

bene�cial to re-map the data to re-capture local references. For example, in the

parallel pre�x algorithm, the distance between accesses increases by a factor of two

for each of the lg(n) iterations over an array of n elements. When the distance

exceeds the blocksize, all references will be remote. At this point it may be bene�cial

to re-distribute the data, using the vectorized messages described above, and change

the address translation maps in such a way as to e�ectively return the distance to

one. Although we intend to provide the mechanism for doing this soon, the harder

question is the analysis required to determine when re-mapping is worth performing,

since it involves moving (potentially) all of the data and re-broadcasting the new

range map entries.

� Support for other message passing abstractions. Currently, VISA operates

atop an interrupt-driven message passing abstraction that is found on the nCUBE/2

and other distributed memory multiprocessors, such as the Intel Paragon. However,

new abstractions, such as provided by the *T architecture, promise to provide very

low-level interfaces to the interconnection network, which can be tuned for optimal

performance by the VISA system.

� Support for other languages. The VISA system currently supports the Sisal

compiler for execution on a distributed memory multiprocessor, although the actual

VISA primitives are language independent. We hope to explore the option of creating

di�erent pathways that lead to VISA from other languages, such as C++, in which

the VISA primitives and capabilities would be wrapped into a class de�nition which

controls the access functions.

Given this long list of future directions, we have selected two items that we will pursue

�rst. We will implement support for the vectorized messages and pre-fetching operators.

Once this is complete, we will implement a re-mapping capability. However, neither of

these improvements will help the Sisal e�ciency until compiler support is in place, so

we will be working with the Sisal group at Lawrence Livermore National Laboratories in

guiding the compiler support.

8.3 Summary

We have introduced our project, which is to study latency avoidance and latency

tolerance for an implementation of the implicitly parallel programming language Sisal on

distributed memory multiprocessors. To that end we have developed a runtime system

that provides support for both task management and memory management. We have

outlined the designs of this system, and presented performance results using a variety of

sample programs designed to test the various aspects of these designs. We have analyzed

the results to determine which methods are successful, which are not, and what can be

done to change this.

The need for scalable and portable parallelism is becoming increasingly important in

the computing and computational science communities. We must develop software that

will allow applications to exploit the speed and power present in today's and tomorrow's

large distributed systems. It is our view that we must shield the programmer from the
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details of programming distributed memory multiprocessors, but not at the expense of

performance. Clearly this is a challenging goal.
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Appendix A

VISA FUNCTIONS

� Allocation

{ V ADDRESS visa malloc (int nelems, int size,

map function map, int map arg)

This function allocates a block of VISA space (nelems * size bytes), which

will be distributed according to map, and returns a pointer to the start of the

allocated space. A range map entry is also created and distributed among the

nodes, and local space is allocated, according to the map, to store the data

structure.

� Deallocation

{ void visa free (V ADDRESS address)

This function returns the given portion of VISA space to the free pool, removes

the corresponding range map entry from each of the range map tables, and

deallocates the local storage used for storing the structure.

� Access

{ range map type * �nd rm (V ADDRESS address)

Return a pointer to the range map entry corresponding to the given VISA

address. This pointer is then passed into each of the access routines as an

argument so that the fetch does not have to be done for each access.

{ char visa get c (V ADDRESS address, range map type *rm)

int visa get i (V ADDRESS address, range map type *rm)


oat visa get f (V ADDRESS address, range map type *rm)

double visa get d (V ADDRESS address, range map type *rm)

These functions return the desired value from the given VISA address. If the

range map entry rm is not de�ned, then the corresponding range map entry

for this structure will be fetched, which is true for all of the access functions.

{ void visa get m (POINTER data, int size, V ADDRESS address,

range map type *rm)

This function copies the block of data starting at the given VISA address and

for a length of size into the local address pointed to by data.

{ void visa put c (char value, V ADDRESS address, range map type *rm)

void visa put i (int value, V ADDRESS address, range map type *rm)

void visa put f (
oat value, V ADDRESS address, range map type *rm)

void visa put d (double value, V ADDRESS address, range map type *rm)

These functions place value into the given VISA address location.
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{ void visa put m (POINTER data, int size, V ADDRESS address,

range map type *rm)

This function copies the local data block of size size and pointed to by data

into the given VISA address location.

{ void visa update c (uchar red, char value, V ADDRESS address,

range map type *rm)

void visa update i (uchar red, int value, V ADDRESS address,

range map type *rm)

void visa update f (uchar red, 
oat value, V ADDRESS address,

range map type *rm)

void visa update d (uchar red, double value, V ADDRESS address,

range map type *rm)

These functions update the value stored in the given VISA address with value,

according to the reduction red. Currently supported reductions include V SUM

and V PRODUCT.


