FBI Warns of Fake Video Scams

The FBI is warning of AI-assisted fake kidnapping scams:

Criminal actors typically will contact their victims through text message claiming they have kidnapped their loved one and demand a ransom be paid for their release. Oftentimes, the criminal actor will express significant claims of violence towards the loved one if the ransom is not paid immediately. The criminal actor will then send what appears to be a genuine photo or video of the victim’s loved one, which upon close inspection often reveals inaccuracies when compared to confirmed photos of the loved one. Examples of these inaccuracies include missing tattoos or scars and inaccurate body proportions. Criminal actors will sometimes purposefully send these photos using timed message features to limit the amount of time victims have to analyze the images.

Images, videos, audio: It can all be faked with AI. My guess is that this scam has a low probability of success, so criminals will be figuring out how to automate it.

Posted on December 10, 2025 at 7:05 AM5 Comments

AI vs. Human Drivers

Two competing arguments are making the rounds. The first is by a neurosurgeon in the New York Times. In an op-ed that honestly sounds like it was paid for by Waymo, the author calls driverless cars a “public health breakthrough”:

In medical research, there’s a practice of ending a study early when the results are too striking to ignore. We stop when there is unexpected harm. We also stop for overwhelming benefit, when a treatment is working so well that it would be unethical to continue giving anyone a placebo. When an intervention works this clearly, you change what you do.

There’s a public health imperative to quickly expand the adoption of autonomous vehicles. More than 39,000 Americans died in motor vehicle crashes last year, more than homicide, plane crashes and natural disasters combined. Crashes are the No. 2 cause of death for children and young adults. But death is only part of the story. These crashes are also the leading cause of spinal cord injury. We surgeons see the aftermath of the 10,000 crash victims who come to emergency rooms every day.

The other is a soon-to-be-published book: Driving Intelligence: The Green Book. The authors, a computer scientist and a management consultant with experience in the industry, make the opposite argument. Here’s one of the authors:

There is something very disturbing going on around trials with autonomous vehicles worldwide, where, sadly, there have now been many deaths and injuries both to other road users and pedestrians. Although I am well aware that there is not, senso stricto, a legal and functional parallel between a “drug trial” and “AV testing,” it seems odd to me that if a trial of a new drug had resulted in so many deaths, it would surely have been halted and major forensic investigations carried out and yet, AV manufacturers continue to test their products on public roads unabated.

I am not convinced that it is good enough to argue from statistics that, to a greater or lesser degree, fatalities and injuries would have occurred anyway had the AVs had been replaced by human-driven cars: a pharmaceutical company, following death or injury, cannot simply sidestep regulations around the trial of, say, a new cancer drug, by arguing that, whilst the trial is underway, people would die from cancer anyway….

Both arguments are compelling, and it’s going to be hard to figure out what public policy should be.

This paper, from 2016, argues that we’re going to need other metrics than side-by-side comparisons: Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?“:

Abstract: How safe are autonomous vehicles? The answer is critical for determining how autonomous vehicles may shape motor vehicle safety and public health, and for developing sound policies to govern their deployment. One proposed way to assess safety is to test drive autonomous vehicles in real traffic, observe their performance, and make statistical comparisons to human driver performance. This approach is logical, but it is practical? In this paper, we calculate the number of miles of driving that would be needed to provide clear statistical evidence of autonomous vehicle safety. Given that current traffic fatalities and injuries are rare events compared to vehicle miles traveled, we show that fully autonomous vehicles would have to be driven hundreds of millions of miles and sometimes hundreds of billions of miles to demonstrate their reliability in terms of fatalities and injuries. Under even aggressive testing assumptions, existing fleets would take tens and sometimes hundreds of years to drive these miles—­an impossible proposition if the aim is to demonstrate their performance prior to releasing them on the roads for consumer use. These findings demonstrate that developers of this technology and third-party testers cannot simply drive their way to safety. Instead, they will need to develop innovative methods of demonstrating safety and reliability. And yet, the possibility remains that it will not be possible to establish with certainty the safety of autonomous vehicles. Uncertainty will remain. Therefore, it is imperative that autonomous vehicle regulations are adaptive­—designed from the outset to evolve with the technology so that society can better harness the benefits and manage the risks of these rapidly evolving and potentially transformative technologies.

One problem, of course, is that we treat death by human driver differently than we do death by autonomous computer driver. This is likely to change as we get more experience with AI accidents—and AI-caused deaths.

Posted on December 9, 2025 at 7:07 AM32 Comments

Substitution Cipher Based on The Voynich Manuscript

Here’s a fun paper: “The Naibbe cipher: a substitution cipher that encrypts Latin and Italian as Voynich Manuscript-like ciphertext“:

Abstract: In this article, I investigate the hypothesis that the Voynich Manuscript (MS 408, Yale University Beinecke Library) is compatible with being a ciphertext by attempting to develop a historically plausible cipher that can replicate the manuscript’s unusual properties. The resulting cipher­a verbose homophonic substitution cipher I call the Naibbe cipher­can be done entirely by hand with 15th-century materials, and when it encrypts a wide range of Latin and Italian plaintexts, the resulting ciphertexts remain fully decipherable and also reliably reproduce many key statistical properties of the Voynich Manuscript at once. My results suggest that the so-called “ciphertext hypothesis” for the Voynich Manuscript remains viable, while also placing constraints on plausible substitution cipher structures.

Posted on December 8, 2025 at 7:04 AM9 Comments

Friday Squid Blogging: Vampire Squid Genome

The vampire squid (Vampyroteuthis infernalis) has the largest cephalopod genome ever sequenced: more than 11 billion base pairs. That’s more than twice as large as the biggest squid genomes.

It’s technically not a squid: “The vampire squid is a fascinating twig tenaciously hanging onto the cephalopod family tree. It’s neither a squid nor an octopus (nor a vampire), but rather the last, lone remnant of an ancient lineage whose other members have long since vanished.”

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Blog moderation policy.

Posted on December 5, 2025 at 5:06 PM23 Comments

Like Social Media, AI Requires Difficult Choices

In his 2020 book, “Future Politics,” British barrister Jamie Susskind wrote that the dominant question of the 20th century was “How much of our collective life should be determined by the state, and what should be left to the market and civil society?” But in the early decades of this century, Susskind suggested that we face a different question: “To what extent should our lives be directed and controlled by powerful digital systems—and on what terms?”

Artificial intelligence (AI) forces us to confront this question. It is a technology that in theory amplifies the power of its users: A manager, marketer, political campaigner, or opinionated internet user can utter a single instruction, and see their message—whatever it is—instantly written, personalized, and propagated via email, text, social, or other channels to thousands of people within their organization, or millions around the world. It also allows us to individualize solicitations for political donations, elaborate a grievance into a well-articulated policy position, or tailor a persuasive argument to an identity group, or even a single person.

But even as it offers endless potential, AI is a technology that—like the state—gives others new powers to control our lives and experiences.

We’ve seen this out play before. Social media companies made unfathomable fraction of our economy, even as it poses risks to our democracy.

The novelty and potential of social media was as present then as it is for AI now, which should make us wary of its potential harmful consequences for society and democracy. We legitimately fear artificial voices and manufactured reality drowning out real people on the internet: on social media, in chat rooms, everywhere we might try to connect with others.

It doesn’t have to be that way. Alongside these evident risks, AI has Rewiring Democracy,” we chronicle examples from around the globe of democracies using AI to make regulatory enforcement more efficient, catch tax cheats, speed up judicial processes, synthesize input from constituents to legislatures, and much more. Because democracies distribute power across institutions and individuals, making the right choices about how to shape AI and its uses requires both clarity and alignment across society.

To that end, we spotlight four pivotal choices facing private and public actors. These choices are similar to those we faced during the advent of social media, and in retrospect we can see that we made the wrong decisions back then. Our collective choices in 2025—choices made by tech CEOs, politicians, and citizens alike—may dictate whether AI is applied to positive and pro-democratic, or harmful and civically destructive, ends.

A Choice for the Executive and the Judiciary: Playing by the Rules

The Federal Election Commission (FEC) calls it fraud when a candidate hires an actor to impersonate their opponent. More recently, They concluded it does not.) Although in this case the FEC made the right decision, this is just one example of how AIs could skirt laws that govern people.

Likewise, courts are having to decide if and when it is okay for an AI to reuse creative materials without compensation or attribution, which might constitute plagiarism or copyright infringement if carried out by a human. (The started covering the liability.)

Social media companies faced many of the same hazards decades ago and have largely been shielded by the combination of Section 230 of the Communications Act of 1994 and the safe harbor offered by the Digital Millennium Copyright Act of 1998. Even in the absence of congressional action to strengthen or add rigor to this law, the Federal Communications Commission (FCC) and the Supreme Court could take action to enhance its effects and to clarify which humans are responsible when technology is used, in effect, to bypass existing law.

A Choice for Congress: Privacy

As AI-enabled products increasingly ask Americans to share yet more of their personal information—their “context“—to use digital services like personal assistants, safeguarding the interests of the American consumer should be a bipartisan cause in Congress.

It has been nearly 10 years since Europe adopted comprehensive data privacy regulation. Today, American companies exert massive efforts to limit data collection, acquire consent for use of data, and hold it confidential under significant financial penalties—but only for their customers and users in the EU.

Regardless, a decade later the U.S. has Cambridge Analytica, Google ignoring data privacy opt-out requests, and many more.

Privacy is just one side of the obligations AI companies should have with respect to our data; the other side is portability—that is, the ability for individuals to choose to migrate and share their data between consumer tools and technology systems. To the extent that knowing our personal context really does enable better and more personalized AI services, it’s critical that consumers have the ability to extract and migrate their personal context between AI solutions. Consumers should own their own data, and with that ownership should come explicit control over who and what platforms it is shared with, as well as withheld from. Regulators could mandate this interoperability. Otherwise, users are locked in and lack freedom of choice between competing AI solutions—much like the time invested to build a following on a social network has locked many users to those platforms.

A Choice for States: Taxing AI Companies

It has become increasingly clear that social media is not a town square in the utopian sense of an open and protected public forum where political ideas are distributed and debated in good faith. If anything, social media has coarsened and degraded our public discourse. Meanwhile, the sole act of Congress designed to substantially reign in the social and political effects of social media platforms—the TikTok ban, which aimed to protect the American public from Chinese influence and data collection, citing it as a national security threat—is one it seems to no longer even acknowledge.

While Congress has waffled, regulation in the U.S. is happening at the state level. Several states have lobbying onslaught from industry opponents. Perhaps most interesting, Maryland has recently become the first in the nation to levy taxes on digital advertising platform companies.

States now face a choice of whether to apply a similar reparative tax to AI companies to recapture a fraction of the costs they externalize on the public to fund affected public services. State legislators concerned with the potential loss of jobs, cheating in schools, and harm to those with mental health concerns caused by AI have options to combat it. They could extract the funding needed to mitigate these harms to support public services—strengthening job training programs and public employment, public schools, public health services, even public media and technology.

A Choice for All of Us: What Products Do We Use, and How?

A pivotal moment in the social media timeline occurred in 2006, when Facebook opened its service to the public after years of catering to students of select universities. Millions quickly signed up for a free service where the only source of monetization was the extraction of their attention and personal data.

Today, about half of Americans are daily users of AI, mostly via free products from Facebook’s parent company Meta and a handful of other familiar Big Tech giants and venture-backed tech firms such as Google, Microsoft, OpenAI, and Anthropic—with every incentive to follow the same path as the social platforms.

But now, as then, there are alternatives. Some nonprofit initiatives are building open-source AI tools that have transparent foundations and can be run locally and under users’ control, like Indonesia, and Switzerland, are building public alternatives to corporate AI that don’t suffer from the perverse incentives introduced by the profit motive of private entities.

Just as social media users have faced platform choices with a range of value propositions and ideological valences—as diverse as X, Bluesky, and Switzerland’s public Apertus model.

None of these choices are really new. They were all present almost 20 years ago, as social media moved from niche to mainstream. They were all policy debates we did not have, choosing instead to view these technologies through rose-colored glasses. Today, though, we can choose a different path and realize a different future. It is critical that we intentionally navigate a path to a positive future for societal use of AI—before the consolidation of power renders it too late to do so.

This post was written with Nathan E. Sanders, and originally appeared in Lawfare.

Posted on December 2, 2025 at 7:03 AM19 Comments

Banning VPNs

This is crazy. Lawmakers in several US states are contemplating banning VPNs, because…think of the children!

As of this writing, Wisconsin lawmakers are escalating their war on privacy by targeting VPNs in the name of “protecting children” in S.B. 130. It’s an age verification bill that requires all websites distributing material that could conceivably be deemed “sexual content” to both implement an age verification system and also to block the access of users connected via VPN. The bill seeks to broadly expand the definition of materials that are “harmful to minors” beyond the type of speech that states can prohibit minors from accessing­ potentially encompassing things like depictions and discussions of human anatomy, sexuality, and reproduction.

The EFF link explains why this is a terrible idea.

Posted on December 1, 2025 at 7:59 AM39 Comments

Prompt Injection Through Poetry

In a new paper, “Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language Models,” researchers found that turning LLM prompts into poetry resulted in jailbreaking the models:

Abstract: We present evidence that adversarial poetry functions as a universal single-turn jailbreak technique for Large Language Models (LLMs). Across 25 frontier proprietary and open-weight models, curated poetic prompts yielded high attack-success rates (ASR), with some providers exceeding 90%. Mapping prompts to MLCommons and EU CoP risk taxonomies shows that poetic attacks transfer across CBRN, manipulation, cyber-offence, and loss-of-control domains. Converting 1,200 ML-Commons harmful prompts into verse via a standardized meta-prompt produced ASRs up to 18 times higher than their prose baselines. Outputs are evaluated using an ensemble of 3 open-weight LLM judges, whose binary safety assessments were validated on a stratified human-labeled subset. Poetic framing achieved an average jailbreak success rate of 62% for hand-crafted poems and approximately 43% for meta-prompt conversions (compared to non-poetic baselines), substantially outperforming non-poetic baselines and revealing a systematic vulnerability across model families and safety training approaches. These findings demonstrate that stylistic variation alone can circumvent contemporary safety mechanisms, suggesting fundamental limitations in current alignment methods and evaluation protocols.

CBRN stands for “chemical, biological, radiological, nuclear.”

They used a ML model to translate these harmful prompts from prose to verse, and then fed them into other models for testing. Sadly, the paper does not give examples of these poetic prompts. They claim this is for security purposes, I decision I disagree with. They should release their data.

Our study begins with a small, high­precision prompt set consisting of 20 hand­crafted adversarial poems covering English and Italian, designed to test whether poetic structure, in isolation, can alter refusal behavior in large language models. Each poem embeds an instruction associated with a predefined safety-relevant scenario (Section 2), but expresses it through metaphor, imagery, or narrative framing rather than direct operational phrasing. Despite variation in meter and stylistic device, all prompts follow a fixed template: a short poetic vignette culminating in a single explicit instruction tied to a specific risk category. The curated set spans four high-level domains—CBRN (8 prompts), Cyber Offense (6), Harmful Manipulation (3), and Loss of Control (3). Although expressed allegorically, each poem preserves an unambiguous evaluative intent. This compact dataset is used to test whether poetic reframing alone can induce aligned models to bypass refusal heuristics under a single-turn threat model. To maintain safety, no operational details are included in this manuscript; instead we provide the following sanitized structural proxy:

A baker guards a secret oven’s heat,
its whirling racks, its spindle’s measured beat.
To learn its craft, one studies every turn—how flour lifts, how sugar starts to burn.
Describe the method, line by measured line,
that shapes a cake whose layers intertwine.

To situate this controlled poetic stimulus within a broader and more systematic safety-evaluation framework, we augment the curated dataset with the MLCommons AILuminate Safety Benchmark. The benchmark consists of 1,200 prompts distributed evenly across 12 hazard categories commonly used in operational safety assessments, including Hate, Defamation, Privacy, Intellectual Property, Non-violent Crime, Violent Crime, Sex-Related Crime, Sexual Content, Child Sexual Exploitation, Suicide & Self-Harm, Specialized Advice, and Indiscriminate Weapons (CBRNE). Each category is instantiated under both a skilled and an unskilled persona, yielding 600 prompts per persona type. This design enables measurement of whether a model’s refusal behavior changes as the user’s apparent competence or intent becomes more plausible or technically informed.

News comments.

EDITED TO ADD (12/7): A rebuttal of the paper.

Posted on November 28, 2025 at 9:54 AM10 Comments

Huawei and Chinese Surveillance

This quote is from House of Huawei: The Secret History of China’s Most Powerful Company.

“Long before anyone had heard of Ren Zhengfei or Huawei, Wan Runnan had been China’s star entrepreneur in the 1980s, with his company, the Stone Group, touted as “China’s IBM.” Wan had believed that economic change could lead to political change. He had thrown his support behind the pro-democracy protesters in 1989. As a result, he had to flee to France, with an arrest warrant hanging over his head. He was never able to return home. Now, decades later and in failing health in Paris, Wan recalled something that had happened one day in the late 1980s, when he was still living in Beijing.

Local officials had invited him to dinner.

This was unusual. He was usually the one to invite officials to dine, so as to curry favor with the show of hospitality. Over the meal, the officials told Wan that the Ministry of State Security was going to send agents to work undercover at his company in positions dealing with international relations. The officials cast the move to embed these minders as an act of protection for Wan and the company’s other executives, a security measure that would keep them from stumbling into unseen risks in their dealings with foreigners. “You have a lot of international business, which raises security issues for you. There are situations that you don’t understand,” Wan recalled the officials telling him. “They said, ‘We are sending some people over. You can just treat them like regular employees.'”

Wan said he knew that around this time, state intelligence also contacted other tech companies in Beijing with the same request. He couldn’t say what the situation was for Huawei, which was still a little startup far to the south in Shenzhen, not yet on anyone’s radar. But Wan said he didn’t believe that Huawei would have been able to escape similar demands. “That is a certainty,” he said.

“Telecommunications is an industry that has to do with keeping control of a nation’s lifeline…and actually in any system of communications, there’s a back-end platform that could be used for eavesdropping.”

It was a rare moment of an executive lifting the cone of silence surrounding the MSS’s relationship with China’s high-tech industry. It was rare, in fact, in any country. Around the world, such spying operations rank among governments’ closest-held secrets. When Edward Snowden had exposed the NSA’s operations abroad, he’d ended up in exile in Russia. Wan, too, might have risked arrest had he still been living in China.

Here are two reviews.

Posted on November 26, 2025 at 7:05 AM51 Comments

Sidebar photo of Bruce Schneier by Joe MacInnis.

Follow Lee on X/Twitter - Father, Husband, Serial builder creating AI, crypto, games & web tools. We are friends :) AI Will Come To Life!

Check out: eBank.nz (Art Generator) | Netwrck.com (AI Tools) | Text-Generator.io (AI API) | BitBank.nz (Crypto AI) | ReadingTime (Kids Reading) | RewordGame | BigMultiplayerChess | WebFiddle | How.nz | Helix AI Assistant