Building intelligent machines to transform data into knowledge
In this age of modern technology, there is one resource that we have in abundance: a large amount of structured and unstructured data. In the second half of the 20th century, machine learning evolved as a subfield of artificial intelligence (AI) involving self-learning algorithms that derive knowledge from data to make predictions.
Instead of requiring humans to manually derive rules and build models from analyzing large amounts of data, machine learning offers a more efficient alternative for capturing the knowledge in data to gradually improve the performance of predictive models and make data-driven decisions.
Not only is machine learning becoming increasingly important in computer science research, but it is also playing an ever-greater role in our everyday lives. Thanks to machine learning, we enjoy robust email spam filters, convenient text and voice recognition software, reliable web search engines, recommendations on entertaining movies to watch, mobile check deposits, estimated meal delivery times, and much more. Hopefully, soon, we will add safe and efficient self-driving cars to this list. Also, notable progress has been made in medical applications; for example, researchers demonstrated that deep learning models can detect skin cancer with near-human accuracy (https://www.forbes.com/sites/robtoews/2021/06/20/these-are-the-startups-applying-ai-to-tackle-climate-change). One of the many approaches to tackling climate change is the emergent field of precision agriculture. Here, researchers aim to design computer vision-based machine learning systems to optimize resource deployment to minimize the use and waste of fertilizers.